1st Semester of the 2023/2024 university year first year students

An exam in descriptive statistics(section A&B)

Solution of EX1:

- Variable type: continuous random variable

- Preparing a suitable frequency table for the data The range

$$R = e_n - e_0 = 17 - 7 = 10$$

The number of classes

 $K = 1 + 3.322 \log_N = 1 + 3.322 \log 20 = 5.32 \approx 6$

The length of the class

$$L = \frac{R}{K} = \frac{10}{6} = 1.7$$

X	fi	Rel fi	1 cf	🖡 cf	ci	Ci fi
[07-8.7 [5	0.25	5	20	7.85	39.25
[8.7-10.4[6	0.3	11	15	9.55	57.3
[10.4-12.1[0	0	11	9	-	0
[12.1-13.8[1	0.05	12	9	12.95	12.95
[13.8-15.5 [4	0.2	16	8	14.65	58.6
[15.5-17.2 [4	0.2	20	4	16.35	65.4
Sum	20	1	-	-	-	233.5

- All the classes have the same length.

- The graphical representation of the ascending and descending cumulative frequency tables.

1st Semester of the 2023/2024 university year first

first year students

An exam in descriptive statistics(section A&B)

-The intersection of the ascending and descending cumulative frequency graphs is denoted by the median value of 10.825, which is visually represented by the arrow on the horizontal axis.

- The median class is [8.7-10.4 [

- Median = L + $[(N/2-cf)/f] \times h=10.11$

Where,

- L = lower limit of the median class
- N = Total frequency
- cf = Cumulative frequency of class before the median class
- f = Frequency of the median class
- h = Class width (Upper limit Lower limit)

- Mode :

Determine the modal class: It is the class corresponding to the highest

frequency witch 6, so the modal class is: [8.7-10.4[

- Mathematical methods:

$$L + h \frac{(f_{m-f_1})}{(f_{m-f_1}) + (f_{m-f_2})} = 8.94$$

Where :

• 'L' is the lower limit of the modal class.

1st Semester of the 2023/2024 university year

first year students

An exam in descriptive statistics(section A&B)

- 'h' is the size of the class interval.
- 'fm' is the frequency of the modal class.
- \bullet $\ \ \, 'fi'$ is the frequency of the class that comes just before the modal class.
- f_2' is the frequency of the class that comes just after the modal class.

$$-Mean \frac{\sum_{i=1}^{N} C_{i} f_{i}}{N} = 233.5/100 = 2.335$$

where,

- Ci = midpoint of each class
- f =frequency of the respective class
- N = total frequency

Solution of EX2:

			-						
$(ci-\overline{X})^{3} f_{i}$	$(ci-\overline{X})^3$	$(ci-\overline{X})^2 f_i$	$(ci-\overline{X})^2$	(ci-X)	$c_i f_i$	ci	cf	$\mathbf{f}_{\mathbf{i}}$	classes
1482071904	123505992	2976048	248004	-498	10800	900	12	12]1000-800]
423417472	26463592	1420864	88804	-298	17600	1100	28	16]1200-1000]
18823840	941192	192080	9604	-98	26000	1300	48	20]1400-1200]
26530200	1061208	260100	10404	102	37500	1500	73	25]1600-1400]
468241336	27543608	1550468	91204	302	28900	1700	90	17]1800-1600]
1265060080	126506008	2520040	252004	502	19000	1900	100	10	[2000-1800]
15069685632	-	8919600	-	-	139800	-	-	100	

 $\bar{X} = \frac{\Sigma_{cifi}}{\Sigma_{fi}} = \frac{139800}{100} = 1398$

- 1- Determining the shape of the statistical distribution of the sample using the relative measure based on moments:
- Second central moment:

$$m_{r} = \frac{1}{\sum_{i=1}^{n}} (c_{i} - \bar{X})^{r} f_{i}$$

$$2 \sum^{k} (c_{i} - \bar{X})^{2} f_{i} = 8919600$$

$$S = \frac{i=1}{N} = \frac{1}{100} = 89196$$

$$S^2 = M_2 = 89196$$

accordinaly: $m_2^3 = (89196)^3 = 709636812601536$

- Third central moment:

$$m_{3} = \frac{1}{\sum_{i=1}^{n}} (c_i - \bar{\lambda})^3 f_i$$

1st Semester of the 2023/2024 university year first year students

An exam in descriptive statistics(section A&B)

$$= \frac{150696856.32}{100}$$

accordinaly:
$$m_{3}^{2} = (\sum_{150696856.32})^{2} = 22709542504730723.94$$
$$m_{2}^{2}$$
$$B_{1} = \frac{3}{3}$$
$$m_{2}$$
$$= \frac{22709542504730723.94}{709636812601536} = 320.016$$

Since $B_1 > 0$, the distribution curve is skewed to the right.

2- Determining the shape of the statistical distribution of the sample using Fisher coefficient of skewness:

$$S = \sqrt{S^{2}} = \sqrt{89196} = 298.65$$

$$S^{3} = (298.65)^{3} = 20424634515593.13$$

$$\overline{F_{1}} = \frac{m}{3}$$

$$\sigma^{3}$$

$$= 150696856.32$$

20424634515593.13

Since $F_1 > 0$, the distribution curve is skewed to the right.

Solution of EX3:

• <u>The first method:</u>

classes	ci	fi	ci fi	$(ci-\bar{x})^2$	$(ci-\bar{x})^2 f_i$
10-12	11	102	1122	11.63	1186.07
12-14	13	120	1560	1.99	238.57
14-16	15	200	3000	0.35	69.62
16-18	17	154	2618	6.7	1033.05
		576	8300		2527.3

 $\bar{x} = \frac{\sum_{cifi}}{\sum_{fi}} = \frac{8300}{576} = 14.41$ Calculation of the variance:

1st Semester of the 2023/2024 university year

first year students

An exam in descriptive statistics(section A&B)

 $S^{2} = \frac{\sum_{i=1}^{k} (xi - \bar{x})^{2} fi}{N} = \frac{2527.3}{576} = 4.38$ <u>Calculation of the Standard deviation:</u>

 $S = \sqrt{S^2} = \sqrt{4.38} = 2.09$

• <u>The second method :</u>

Classes	Xi	fi	Xi^2	Xi ² fi
10-12	11	102	121	12342
12-14	13	120	169	20280
14-16	15	200	225	45000
16-18	17	154	289	44506
		576		122128

 $\bar{x} = \frac{\sum_{cifi}}{\sum_{fi}} = \frac{8300}{576} = 14.41$

 $\frac{\text{Calculation of the variance:}}{S^2 = \frac{1}{N} \left[\sum_{i=1}^{k} x_i^2 f_i \right] \cdot \bar{x}^2 = \frac{1}{576} \left[122128 \right] \cdot (14.41)^2 = \frac{1}{576} (122128) \cdot (207.65) = 4.38$

Calculation of the Standard deviation:

 $S = \sqrt{S^2} = \sqrt{16.27} = 4.03$