Abbas Lagrour University - Khenchela Faculty of Economic, Commercial and Management Sciences

1st Semester of the 2023/2024 university year
first year students An exam in descriptive statistics(section A\&B)

Solution of EX1:

- Variable type: continuous random variable
- Preparing a suitable frequency table for the data

The range

$$
R=e_{n}-e_{0}=17-7=10
$$

The number of classes
$\mathrm{K}=1+3.322 \log _{\mathrm{N}}=1+3.322 \log 20=5.32 \approx 6$

The length of the class

$$
L=\frac{\mathrm{R}}{\mathrm{~K}}=\frac{10}{6}=1.7
$$

X	fi	Rel fi	cf	$\mathbf{c f}$	ci	Ci fi
$[07-8.7[$	5	0.25	5	20	7.85	39.25
$[\mathbf{8 . 7 - 1 0 . 4}[$	$\mathbf{6}$	$\mathbf{0 . 3}$	$\mathbf{1 1}$	$\mathbf{1 5}$	$\mathbf{9 . 5 5}$	$\mathbf{5 7 . 3}$
$[10.4-12.1[$	0	0	11	9	-	0
$[12.1-13.8[$	1	0.05	12	9	12.95	12.95
$[13.8-15.5[$	4	0.2	16	8	14.65	58.6
$[15.5-17.2[$	4	0.2	20	4	16.35	65.4
Sum	20	1	-	-		233.5

- All the classes have the same length.
- The graphical representation of the ascending and descending cumulative frequency tables.

Abbas Lagrour University - Khenchela Faculty of Economic, Commercial and Management Sciences

1st Semester of the 2023/2024 university year
first year students
An exam in descriptive statistics(section A\&B)

-The intersection of the ascending and descending cumulative frequency graphs is denoted by the median value of 10.825 , which is visually represented by the arrow on the horizontal axis.

- The median class is [8.7-10.4 [
- Median $=\mathrm{L}+[(\mathrm{N} / 2-\mathrm{cf}) / \mathrm{f}] \times \mathrm{h}=10.11$

Where,

- $\mathrm{L}=$ lower limit of the median class
- $\mathrm{N}=$ Total frequency
- $\mathrm{cf}=$ Cumulative frequency of class before the median class
- $\mathrm{f}=$ Frequency of the median class
- $\mathrm{h}=$ Class width (Upper limit - Lower limit)

- Mode :

Determine the modal class: It is the class corresponding to the highest
frequency witch 6 , so the modal class is: [8.7-10.4[

- Mathematical methods:
$L+h \frac{\left(f_{m}-f_{1}\right)}{\left(f_{m}-f_{1}\right)+\left(f_{m}-f_{2}\right)}=8.94$
Where :
- 'L' is the lower limit of the modal class.

Abbas Lagrour University - Khenchela Faculty of Economic, Commercial and Management Sciences

1st Semester of the 2023/2024 university year
first year students

An exam in descriptive statistics(section A\&B)

- 'h' is the size of the class interval.
- ' f_{m} ' is the frequency of the modal class.
- ' f_{1} ' is the frequency of the class that comes just before the modal class.
- 'f2' is the frequency of the class that comes just after the modal class.

$$
- \text { Mean } \frac{\Sigma}{N}^{\Sigma^{i n}} C \mathrm{i} f \mathrm{i}=233.5 / 100=2.335
$$

where,

- ${ }^{C \mathrm{i}}=$ midpoint of each class
- $\mathrm{f}=$ frequency of the respective class
- $\mathrm{N}=$ total frequency

Solution of EX2:

$(c i-\bar{X})^{j} f_{i}$	$(c i-\bar{X})^{j}$	$(c i-\overline{-})^{2} f_{i}$	$(c i-\overline{-})^{2}$	$(c i-\bar{X})$	$c_{i} f_{i}$	ci	cf	f_{i}	classes
1482071904	123505992	2976048	248004	-498	10800	900	12	12	$] 1000-800]$
423417472	26463592	1420864	88804	-298	17600	1100	28	16	$] 1200-1000]$
18823840	941192	192080	9604	-98	26000	1300	48	20	$] 1400-1200]$
26530200	1061208	260100	10404	102	37500	1500	73	25	$] 1600-1400]$
468241336	27543608	1550468	91204	302	28900	1700	90	17	$] 1800-1600]$
1265060080	126506008	2520040	252004	502	19000	1900	100	10	$[2000-1800]$
15069685632	-	8919600	-	-	139800	-	-	100	

$\bar{X}=\frac{\sum_{\mathrm{c} i f i}}{\sum_{f i}}=\frac{139800}{100}=1398$
1- Determining the shape of the statistical distribution of the sample using the relative measure based on moments:

- Second central moment:

$$
\begin{gathered}
m_{r}=\frac{1}{\sum_{i=1}^{n}}\left(c_{i}-\bar{X}\right)^{r} f_{i} \\
2 \sum^{\mathrm{k}}\left((i-\bar{X})^{2} f i \quad 8919600\right. \\
\mathrm{S}=\frac{8}{N}=\frac{}{100}=89196
\end{gathered}
$$

$$
S^{2}=M_{2}=89196
$$

accordinaly:

$$
m_{2}{ }^{3}=(89196)^{3}=709636812601536
$$

Third central moment:

$$
m_{3}=\frac{1}{\overline{\sum_{i=1}^{n}}\left(c_{i}-\bar{X}^{3} f_{i}\right.}
$$

Abbas Lagrour University - Khenchela Faculty of Economic, Commercial and Management Sciences

1st Semester of the 2023/2024 university year
first year students
An exam in descriptive statistics(section A\&B)

$$
=150696856.32
$$

100
accordinaly:

$$
m_{3}^{2}=(150696856.32)^{2}=22709542504730723.94
$$

$$
\begin{gathered}
m^{2} \\
B_{1}=\frac{3}{3}_{3}^{m} \\
2 \\
=\begin{array}{c}
22709542504730723.94 \\
709636812601536
\end{array}=320.016
\end{gathered}
$$

Since $B_{1}>0$, the distribution curve is skewed to the right.
2- Determining the shape of the statistical distribution of the sample using Fisher coefficient of skewness:

$$
\begin{gathered}
\mathrm{S}^{3}=\quad \mathrm{S}=\sqrt{\mathrm{S}^{2}}=\sqrt{89196}=298.65 \\
(298.65)^{3}=20424634515593.13 \\
\overline{F_{1}=}=\frac{m 3}{\sigma^{3}} \\
=\frac{150696856.32}{}= \\
20424634515593.13
\end{gathered}
$$

Since $F_{1}>0$, the distribution curve is skewed to the right.

Solution of EX3:

- The first method:

classes	$c i$	fi	ci i i	$(c i-\bar{x})^{2}$	$(r i-\bar{x})^{2} f_{i}$
$10-12$	$\mathbf{1 1}$	$\mathbf{1 0 2}$	1122	11.63	1186.07
$12-14$	$\mathbf{1 3}$	$\mathbf{1 2 0}$	1560	1.99	238.57
$14-16$	$\mathbf{1 5}$	$\mathbf{2 0 0}$	3000	0.35	69.62
$16-18$	$\mathbf{1 7}$	$\mathbf{1 5 4}$	2618	6.7	1033.05
		576	8300		2527.3

$$
\bar{x}=\frac{\sum_{c i f i}}{\sum_{f i}}=\frac{8300}{576}=14.41
$$

Calculation of the variance:

Abbas Lagrour University - Khenchela Faculty of Economic, Commercial and Management Sciences

1st Semester of the 2023/2024 university year
first year students An exam in descriptive statistics(section A\&B)

$$
\mathrm{S}^{2}=\frac{\sum_{i=1}^{k}(x i-\bar{x})^{2} f i}{N}=\frac{2527.3}{576}=4.38
$$

Calculation of the Standard deviation:

$\mathrm{S}=\sqrt{\mathrm{S}}^{2}=\sqrt{4.38}=2.09$

- The second method :

Classes	$X i$	$f i$	$X i^{2}$	$X i^{2}{ }^{\text {fi }}$
$10-12$	$\mathbf{1 1}$	$\mathbf{1 0 2}$	121	12342
$12-14$	$\mathbf{1 3}$	$\mathbf{1 2 0}$	169	20280
$14-16$	$\mathbf{1 5}$	$\mathbf{2 0 0}$	225	45000
$16-18$	$\mathbf{1 7}$	$\mathbf{1 5 4}$	289	44506
	576		122128	

$\bar{x}=\frac{\Sigma_{c i f i}}{\sum_{f i}}=\frac{8300}{576}=14.41$
Calculation of the variance:
$\mathrm{S}^{2}=\frac{1}{N}\left[\sum_{i=1}^{k} x_{i}^{2} f_{i}\right]-\bar{x}^{2}=\frac{1}{576}[122128]-(14.41)^{2}=$
$\frac{1}{576}$ (122128)- $(207.65)=4.38$

Calculation of the Standard deviation:

$\mathrm{S}=\sqrt{\mathrm{S}}^{2}=\sqrt{16.27}=4.03$

