Department of Mathematics \& Informatics,
A. U. 2023/2024

College of Sciences \& Technology,
University Abbes Laghrour Khenchela
Second semester
Answer type "Analysis 2"
ercice 1. (5 pts) We have
a. ((2)pts) To calculate $\int_{\frac{\pi}{\pi}}^{\pi}(\sin x)^{2024} \cos x d x$, we apply the Variable Change Method $u=$ $\sin x$, which gives $d u=\cos x d x$. So

$$
\begin{aligned}
\int_{\frac{\pi}{2}}^{\pi}(\sin x)^{2024} \cos x d x & =\int_{\sin \left(\frac{\pi}{2}\right)}^{\sin (\pi)} u^{2024} d u=\int_{1}^{0} u^{2024} d u= \\
-\int_{0}^{1} u^{2024} d u & \left.=-\frac{u^{2025}}{2025}\right]_{0}^{1}=-\frac{1}{2025}
\end{aligned}
$$

b. (3 pts) To calculate $\int_{-1}^{1} x \arctan x d x$, we apply the method of integration by parts, we set $u^{\prime}=x$ and $v=\arctan x$.
This gives $u=\frac{1}{2} x^{2}$ and $v^{\prime}=\frac{1}{x^{2}+1}$. Then

$$
\begin{aligned}
\int_{-1}^{1} x \arctan x d x & \left.=\frac{1}{2} x^{2} \arctan x\right]_{-1}^{1}-\int_{-1}^{1} \frac{1}{2} x^{2}\left(\frac{1}{x^{2}+1}\right) d x \\
& =\frac{1}{2}\left[\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right]-\frac{1}{2} \int_{-1}^{1} \frac{x^{2}}{x^{2}+1} d x \\
& =\frac{\pi}{4}-\frac{1}{2} \int_{-1}^{1} \frac{x^{2}+1-1}{x^{2}+1} d x=\frac{\pi}{4}-\frac{1}{2}\left[\int_{-1}^{1}\left(1-\frac{1}{x^{2}+1}\right) d x\right] \\
& =\frac{\pi}{4}-\frac{1}{2}[x-\arctan x]_{-1}^{1}=\frac{\pi}{4}-\frac{1}{2}\left[2-\left(\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right)\right] \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

ercice 2. (5 pts) Let the function defined on the interval $[1,5]$ by $f(x)=3 x^{2}+1$.
a. ((at) pt) To show by recurrence that

$$
\begin{equation*}
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{1}
\end{equation*}
$$

we put

$$
S_{n}=1^{2}+2^{2}+\ldots+n^{2} \text { and } \pi_{n}=\frac{n(n+1)(2 n+1)}{6}
$$

The first property

$$
S_{1}=1^{2}=\frac{1 \cdot(1+1) \cdot(2 \cdot 1+1)}{6}=\pi_{1} .
$$

is satisfied.
Suppose (1) is satisfied until the order n and we're going to prove it for the order $n+1$. We have

$$
\begin{aligned}
S_{n+1} & =S_{n}+(n+1)^{2}=\frac{n(n+1)(2 n+1}{6}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6}=\frac{(n+1)}{6}[n(2 n+1)+6(n+1)] \\
& =\frac{(n+1)\left[2 n^{2}+7 n+6\right]}{6}=\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

Then S_{n+1} can be written on the form (1):

$$
S_{n+1}=\frac{(n+1)[(n+1)+1][2(n+1)+]}{6}
$$

This ends the proof of the part (a).
b. (4 pts) To calculate the integral

$$
\int_{1}^{5} f(x) d x
$$

we use the Riemann sums, we have by definition

$$
\int_{1}^{5} f(x) d x=\lim _{n \rightarrow \infty} P_{n}
$$

where

$$
P_{n}=h_{n} \sum_{i=0}^{n} f\left(1+i h_{n}\right)
$$

with

$$
h_{n}=\frac{(5-1)}{n}
$$

So

$$
\begin{aligned}
P_{n} & =h_{n} \sum_{i=0}^{n}\left[3\left(1+\frac{4 i}{n}\right)^{2}+1\right]=\frac{4}{n} \sum_{i=0}^{n}\left[3\left(1+\frac{8 i}{n}+\frac{16 i^{2}}{n^{2}}\right)+1\right] \\
& =\frac{4}{n}\left[\sum_{i=0}^{n} 3+1+\frac{24}{n} \sum_{i=0}^{n} i+\frac{48}{n^{2}} \sum_{i=0}^{n} i^{2}\right] .
\end{aligned}
$$

Applying (1) without forgetting the well known formula

$$
\sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

we get

$$
\begin{aligned}
P_{n} & =\frac{4}{n}\left[4 n+\frac{24}{n} \frac{n(n+1)}{2}+\frac{48}{n^{2}} \frac{n(n+1)(2 n+1)}{6}\right] \\
& =4\left[4+\frac{12(n+1)}{n} \frac{48(n+1)(2 n+1)}{6 n^{2}}\right]=4[4+12+16] \\
& =128 .
\end{aligned}
$$

Which gives

$$
\lim _{n \rightarrow \infty} P_{n}=128
$$

Finally we have

$$
\int_{1}^{5}\left(3 x^{2}+1\right) d x=128
$$

ercice 3. (5 pts) Let be the following ordinary differential equation:

$$
\begin{equation*}
x\left(x^{2}+1\right) \frac{d y}{d x}-2 y=x^{3}(x-1) e^{-x} \tag{2}
\end{equation*}
$$

a. (1 pt) We have

$$
\frac{2}{x\left(x^{2}+1\right)}=\frac{2}{x}-\frac{2 x}{x^{2}+1}
$$

b. (1 pt) The homogeneous equation can be written as follows

$$
x\left(x^{2}+1\right) \frac{d y}{d x}-2 y=0
$$

which gives

$$
\int \frac{d y}{y}=\int \frac{2}{x\left(x^{2}+1\right)} d x=\int\left(\frac{2}{x}-\frac{2 x}{x^{2}+1}\right) d x .
$$

Then

$$
\ln \frac{y}{C}=2 \ln x-\ln \left(x^{2}+1\right)
$$

where C is an arbitrary constant. Then

$$
y=C \frac{x^{2}}{x^{2}+1} .
$$

c. (2 pts) The method of changing the constant consists in assuming

$$
y=C(x) \frac{x^{2}}{x^{2}+1}
$$

then we replace in (2) to obtain

$$
C^{\prime}(x)=(x-1) e^{-x} .
$$

Integration by parts gives

$$
C(x)=-x e^{-x}+C_{1}
$$

where C is an arbitrary constant. Then the general solution of the differential equation (2) can be written as follows

$$
y=\frac{\left(-x e^{-x}+C_{1}\right) x^{2}}{x^{2}+1}
$$

d. (1 pt) For $x=1$, we have $y(1)=\frac{-e^{-1}+C_{1}}{2}=0$. Which gives $C_{1}=e^{-1}$. The solution of the differential equation (2) satisfying the initial condition $y(1)=0$ is

$$
y=\frac{\left(-x e^{-x}+e^{-1}\right) x^{2}}{\left(x^{2}+1\right)}
$$

ercice 4. (5 pts) Let the differential equation of the second order

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=27\left(2 x^{2}+3 x-1\right) \tag{3}
\end{equation*}
$$

a. ((2)pts) To find the general y_{G} solution of the homogeneous differential equation associated with (3), we solve the characteristic equation

$$
\alpha^{2}-6 \alpha+9=0
$$

which gives $\alpha_{1}=\alpha_{2}=3$, then

$$
y_{G}=\left(C_{1}+C_{2} x\right) e^{3 x}
$$

b. (2 pts) To Find a Particular Solution of the Differential Equation (3) on the form $y_{P}=a x^{2}+b x+c$, we replace in (3) and by identification we obtain

$$
y_{P}=6 x^{2}+17 x+7 .
$$

c. ($\mathbf{2} \mathbf{p t s}$) The general solution of the differential equation (3) is

$$
y=y_{G}+y_{P}=\left(C_{1}+C_{2} x\right) e^{3 x}+6 x^{2}+17 x+7
$$

