التصحيح النموذجي لامتحان الدورة العادية -الاحصاء الوصفي والرياضي2 -	
	<i>التمرين الأول</i> (7.5نقاط)
ن 0.5	$P(A) = \frac{150}{400} = 0.375 -1$
ن 0.5	$P(B) = \frac{140}{400} = 0.35$
0.5P(C	P(A) = 1 - [P(A) + P(B)] = 1 - (0.375 + 0.35) = 0.275
ن 0.5	P(R/A) = 0.12 - حسب معطیات التمرین $= 0.12$
0.5 ن	P(R/B) = 0.15
ن 0.5	P(R/C) = 0.1
	3- عبارة دستور الاحتمال الكلي:
ن $P(R) = P\left(R\right)$	$P(A) \cdot P(A) + P(R/B) \cdot P(B) + P(R/C) \cdot P(C)$
0.12×0.3	التعويض العددي : 0.125 = 0.125 × 0.35 + 0.1 × 75 + 0.15
	$p\left({}^{C}\!/_{R} ight)$ نرید حساب 4
ان.5 $p\left(\frac{C}{R}\right) = \frac{p(\frac{R}{C}) \cdot p(C)}{p(R)}$	$-=rac{0.1 imes0.275}{0.125}=0.22$:(Bayes) حسب دستور الاحتمال النسبي
	<u>التمرين الثاني (</u> 3.5نقاط)
p=0.3 :سحب طالب متغيب احتماله	عند سحب عينة حجمها $n=6$ نكرر تجربة برنولية 6 مرات ، حدث النجاح هو
	وبالتالي القانون الذي يخضع له X عدد الطلبة المتغيبين في عينة من 6 طلبة
1.5 ن	$X{\sim}\mathfrak{B}(6;0.3)$ هو ثنائي الحد
P(X	حساب احتمال أن لا يوجد اي طالب متغيب في العينة معناه حساب (0 =
انP(X =	$= k) = c_6^k 0.3^k (1 - 0.3)^{6-k} = 0.117$
1ن	$P(X=0) = c_6^0 0.3^0 0.7^6 = 0.117$
	التمرين الثالث (4 نقاط)
$\sigma_{\chi}=3$ انحرافه المعياري $\mu_{X}=$	E(X)=11 المتغير العشوائي لعلامات الطلبة ، X طبيعي متوسطه X
	- القانون الذي يخضع له متوسط العينة
0.5 ن	الطبيعة: X طبيعي وبالتالي $ar{X}$ طبيعي
ن	$\mu_{ar{X}} = E(ar{X}) = E(X) = 11$: (المتوسط) التوقع

التباین : $\sigma_{\bar{X}}^2 = Var(\bar{X}) = \frac{Var(X)}{n} = \frac{3^2}{25} = 0.36$ التباین : $\sigma_{\bar{X}}^2 = Var(\bar{X}) = \frac{Var(X)}{n} = \frac{3^2}{25} = 0.36$ $p(\bar{X} \geq 10)$ $p(\bar{X} \ge 10) = p\left(\frac{\bar{X}-11}{\sqrt{0.36}} \le \frac{10-11}{\sqrt{0.36}}\right)$ $= p(Z \ge -1.66) = p(Z \le 1.66) = F(1.66) = 0.95$ التمرين الرابع (6 نقاط) الاجابة تتعلق بالمقارنة بين متوسطى عينتين مستقلتين. ليكن X المتغير العشوائي لعلامات الطلبة الذين يزاولون دروس خصوصية $s_{
m x}=3$ و $ar{x}=12.5$ حجم العينة المسحوبة n=17 و لدينا Y المتغير العشوائي لعلامات الطلبة الذين Y المتغير العشوائي لعلامات الطلبة الذين Y $s_{
m v}=2.5$ و $\overline{y}=10.75$ ولدينا m=20 و ولدينا $\mu_X = \mu_Y$ نريد المقارنة بين متوسطي المجتمعين $\mu_X = \mu_Y$ H_0 : $\mu_X = \mu_Y$: الفرضية الصفرية -1 $H_1\colon \mu_X
eq \mu_V \; : \; H_2$ الفرضية البديلة $\mu_Y \mapsto H_1$ $S_p = \sqrt{\frac{n \, S_X{}^2 + m \, S_Y{}^2}{n + m - 2}}$ مع $T = \frac{\bar{X} - \bar{Y}}{S_n \, \left[\frac{1}{n} + \frac{1}{m}\right]}$ مع المحائية اتخاذ القرار Tيخضع لتوزيع ستيودنت بـ 352-2-10+1 درجة حرية T $\alpha = 0.1$ قيمة مستوى المعنوية المعطاة في نص المسالة هي $\alpha = 0.1$ ومنه: $t\alpha_{/2,n+m-2}=t_{0.05,35}=1.9$ ومنه: ن $I_{Rejet} = \left] -\infty, -t\alpha_{/2}, n+m-2\right[\cup \left] t\alpha_{/2}, n+m-2, +\infty\right[= \left] -\infty, -169\right[\cup \left] 1.69, +\infty\right[-3]$ T نحسب قيمة إحصائية الاختبار T من معطيات العينتين $s_p = \sqrt{\frac{ns_X^2 + ms_Y^2}{n + m - 2}} = \sqrt{\frac{17 \times 3^2 + 20 \times 2.5^2}{17 + 20 - 2}} = 2.82$ $t_0 = \frac{x - y}{S_{p_*} / \frac{1}{n} + \frac{1}{m}} = \frac{12.50 - 10.75}{3.6 \times \sqrt{\frac{1}{17} + \frac{1}{20}}} = 1.88$ ان القرار : $I.88 \in I_{Rejet}$ ونقبل H_1 ونقبل القرار : $I.88 \in I_{Rejet}$ المتو سطان مختلفان نستنتج انه: يمكن القول تحت مستوى معنوية يقدر بـ0.1 ان للدروس الخصوصية تاثير _______________________