Exercise \mathbf{N}° 01: (7pts)

Three point charges: $q_{A}=+4 \mu C, q_{B}=-10 \mu C$ and $q_{D}=-6 \mu C$ are placed respectively on three points on $(O y)$ axis; $A(-a) ; B(2 a)$ and $D(a)$, with $a=10 \mathrm{~cm}$.

1- Calculate and represent the electric field vector at the origin O .
2- Calculate the electric potential in the origin.
Now; a fourth charge $q_{0}=-2 n C$ is placed at the origin O .
3- Deduce the force vector acting on the charge q_{0}.
4- Find the potential energy of the charge q_{0}.
We give: $K=\frac{1}{4 \pi \varepsilon_{0}}=9.10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$

Exercise \mathbf{N}° 02: $(7 \mathrm{pts})$

Consider a charge Q_{l} distributed on a rectilinear line of infinite length L with a uniform charge density $\lambda>0$.

Another charge Q_{2} (where: $Q_{1}=-2 Q_{2}$) distributed on the surface of a cylinder coaxial on the charged rectilinear line, we consider that, the cylinder has the same length \boldsymbol{L} and a radius \boldsymbol{R} (with $\boldsymbol{R} \ll \boldsymbol{L}$) and it charged with a uniform charge density $\boldsymbol{\sigma}$.

1- Give the relationship between σ and λ.
2- Using Gauss's law; calculate the electric field as a function of ($\boldsymbol{\lambda}, \boldsymbol{r}, \boldsymbol{R}$ and ε_{0}) at any point " r " in space.

3- Knowing that $\boldsymbol{V}(\boldsymbol{R})=V_{0}$, calculate the potential in the two regions: $r<\boldsymbol{R}$ and $r>\boldsymbol{R}$.

Exercise ${ }^{\circ}{ }^{\circ}$ 03: (6 pts)

I) Calculate the equivalent capacity between A and B .

Numerical application:
$\mathrm{C}_{1}=2 \mathrm{nF}$ and $\mathrm{C}_{2}=3 \mathrm{nF}$

II) Consider the opposite circuit.

Using Kirchhoff's laws; Calculate and represent (in the figure) the currents flowing through each branch.

Numerical application: $\mathrm{R}=5 \Omega, \mathrm{E}_{1}=20 \mathrm{~V}$ and $\mathrm{E}_{2}=10 \mathrm{~V}$.

