Final Exam (1h, 30')

Exercise N° 01: (7pts)

Three point charges: $q_A = +4\mu C$, $q_B = -10\mu C$ and $q_D = -6\mu C$ are placed respectively on three points on (*Oy*) axis; *A*(-*a*); *B*(2*a*) and *D*(*a*), with *a* = 10 cm.

- 1- Calculate and represent the electric field vector at the origin O.
- 2- Calculate the electric potential in the origin.

Now; a fourth charge $q_0 = -2nC$ is placed at the origin O.

- 3- Deduce the force vector acting on the charge q_0 .
- 4- Find the potential energy of the charge q_0 .

We give: $K = \frac{1}{4\pi\varepsilon_0} = 9.10^9 Nm^2/C^2$

Exercise N° 02: (7pts)

Consider a charge Q_1 distributed on a rectilinear line of infinite length L with a uniform charge density $\lambda > 0$.

Another charge Q_2 (where: $Q_1 = -2Q_2$) distributed on the surface of a cylinder coaxial on the charged rectilinear line, we consider that, the cylinder has the same length L and a radius R (with R << L) and it charged with a uniform charge density σ .

- 1- Give the relationship between σ and λ .
- 2- Using Gauss's law; calculate the electric field as a function of (λ, r, R) and ε_0 at any point "r" in space.
- 3- Knowing that $V(R) = V_0$, calculate the potential in the two regions: r < R and r > R.

Exercise N° 03: (6pts)

I) Calculate the equivalent capacity between A and B.
Numerical application:

 $C_1 = 2nF$ and $C_2 = 3nF$

II) Consider the opposite circuit.

Using Kirchhoff's laws; Calculate and represent (in the figure) the currents flowing through each branch.

Numerical application: $R = 5\Omega$, $E_1 = 20V$ and $E_2 = 10V$.

