## Abbas Lagrour University - Khenchela

## Faculty of Economic, Commercial and Management Sciences

2nd Semester of the 2023/2024 university year
first year students
An exam in statistics 2(section A\&B)

## Exercise 1 :

Suppose three coins are tossed. Let X be the random variable representing the number of tails that occur.

## Required:

1. Find the sample space $S$ ?
2. Find the cardinality of $S$ ?
3. Identify the set of possible values for the random variable $X$ ?
4. Find the probabilities corresponding to the values of the random variable X ?
5. Find the probability mass function of X ? and represent it graphically?
6. Find the cumulative distribution function? and represent it graphically?

## Exercise 2:

Consider the following cumulative distribution function of a random variable X : ( The first derivative of the CDF yields the $\operatorname{PDF}, \mathrm{F}^{\prime}(\mathbf{x})=\mathbf{f}(\mathbf{x})$ )

$$
F(x)=\left\{\begin{array}{c}
0 ; \text { if } x<2 \\
\frac{1}{4} x^{2}+2 x-3 ; \text { if } 2 \leq x \leq 4 \\
1 ; x>4
\end{array}\right.
$$

## Required:

1. What is the PDF of $X$ ?
2. Determine $E(X)$ and $\operatorname{Var}(X)$.

亿- The number of ways in which they can be seated so that two men refuse to sit together is:

- The number of ways in which 3 men and 3 women can be seated at a table with 6 chairs is:

$$
C_{7}^{3} \cdot C_{8}^{3}=35.56=1960
$$

- We consider these two men sitting together, so the number of approaches becomes:

$$
C_{8}^{3} \cdot C_{5}^{1}=280=5.56
$$

- So the number of ways these two men don't come together at this table is:

$$
1960-280=1680 C_{7}^{3} \cdot C_{8}^{3}-C_{5}^{1} \cdot C_{8}^{3}=
$$

2 - The number of ways in which they can be seated so that two women refuse to sit together is:

- The number of ways in which these two women meet is: $C_{7}^{3} \cdot C_{b=35.6=210}^{1}$
- So the number of ways these two women don't come together at this table is:

$$
C_{7}^{3} \cdot C_{8}^{3}-C_{7}^{3} \cdot C_{6}^{1}=1960-210=1750
$$

3 - The number of ways in which they can be seated so that a man and a woman refuse to sit together is:

- The number of ways in which they can be seated so that a man and a woman meet together is:

$$
C_{7=315}^{2} \cdot C_{6}^{2}
$$

- So the number of ways in which a man and a woman do not get together is:

$$
C_{7}^{3} \cdot C_{8}^{3}-C_{6}^{2} \cdot C_{7}^{2}=1960-315=1645
$$

$$
S=\{F F F, F F P, F P F, P F F, P P P, P P F, P F P, F P P\}
$$

$|S|=8$.
3.
4.

$$
P(x=0)=\frac{1}{8}
$$

$$
=
$$

$$
\begin{aligned}
& \{ \\
& 0
\end{aligned}
$$

$$
\text { ' } 1
$$

$$
\dot{2}
$$

$$
3
$$

$$
\}
$$

5. 

| $x_{i}$ | 0 | 1 | 2 | 3 | $\sum$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{\mathrm{i}}$ | $\overline{1}$ | $\overline{8}$ | $\overline{3}$ | $\frac{3}{8}$ | $\frac{1}{8}$ |

Graphical representation of probability distribution:


6

$$
\begin{aligned}
& \forall x \in]-\infty, 0[\Rightarrow F(x)=0 \\
& \forall x \in\left[0,1\left[\Rightarrow F(x)=\frac{1}{8}\right.\right. \\
& \forall x \in\left[1,2\left[\Rightarrow F(x)=\frac{1}{8}+\frac{3}{8}=\frac{1}{2}\right.\right. \\
& \forall x \in\left[2,3\left[\Rightarrow F(x)=\frac{1}{8}+\frac{3}{8}+\frac{3}{8}=\frac{7}{8}\right.\right. \\
& \forall x \in\left[3,+\infty\left[\Rightarrow F(x)=\frac{1}{8}+\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=1\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}(\mathrm{X} \leq 2) & =\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2) \\
= & \frac{1}{8}+\frac{3}{8}+\frac{3}{8} \\
= & \frac{7}{8}
\end{aligned}
$$




$$
f(x)= \begin{cases}0 & \text { if } x<2 \\ \oint^{\frac{1}{2}} x+2 & \text { if } 2 \leq x \leq 4 \\ \text { if } x>4 .\end{cases}
$$

$$
\begin{aligned}
\text { 2_ } \mathrm{E}(X) & =\int_{-\infty}^{2} x f(x) \mathrm{d} x=\int_{-\infty}^{\infty} x 0 \mathrm{~d} x+\int_{2}^{4} x\left(+\frac{1}{2} x+2\right) \mathrm{d} x+\int_{4}^{\infty} x 0 \mathrm{~d} x \\
& =0+\int_{2}^{4}\left(+\frac{1}{2} x^{2}+2 x\right) \mathrm{d} x+0 \\
& =
\end{aligned}
$$

Given that we have already calculated $\overline{\mathrm{E}}(X)$, we can use Theorem
$\varepsilon$ to calculate the variance as $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$. The expectation of $X^{2}$ is

$$
\mathrm{E}\left(X^{2}\right)=\int_{2}^{4} x^{2}\left(\mathrm{~T}^{\frac{1}{2}} x+2\right) \mathrm{d} x=\int_{2}^{4}\left(+\frac{1}{2} x^{3}+2 x^{2}\right) \mathrm{d} x
$$

