ALGEBRA 2 FINAL EXAM CORRECTION

Exercise 01: (04 points) I) Let $P_3(\mathbb{R})$ be the vector space of polynomials with real coefficients and degree at most 3. Let

$$W = \{ p \in P_3(\mathbb{R}) : p(0) = p''(0) \text{ and } p'(1) = 0 \},\$$

where p' and p'' are the first and the second derivative of p respectively.

1• Prove that W is a subspace of $P_3(\mathbb{R})$.

Denote $p_0(x) = 0_{P_3(\mathbb{R})}$. Then $p_0(x) = 0$, $\forall x \in \mathbb{R}$. We have $p_0(0) = p''_0(0) = 0$, and $p'_0(1) = 0$. Hence $p_0 \in W$, thus $W \neq \phi$. (0.25)

Let $p_1, p_2 \in W$, then we have

$$p_1(0) = p''_1(0)$$
 and $p'_1(1) = 0$
 $p_2(0) = p''_2(0)$ and $p'_2(1) = 0$,

thus

$$\begin{cases} p_1(0) + p_2(0) = p_1''(0) + p_2''(0) \\ and \\ p_1'(1) + p_2'(1) = 0 \end{cases}$$

hence $p_1+p_2 \in W$. Let $\alpha \in \mathbb{R}$, let $p \in W$, we have

p(0) = p''(0) and p'(1) = 0,

 \mathbf{thus}

$$\alpha p(0) = \alpha p''(0)$$
 and $\alpha p'(1) = \alpha 0 = 0$.

hence $\alpha p \in W$. thus W is a subspace of $P_3(\mathbb{R})$.

2• Find a basis of W. Deduce the dimension of W.

let $p \in W$ such that $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$, with $a_i \in \mathbb{R}, 0 \le i \le 3$, then by the condition p(0) = p''(0) and p'(1) = 0, we get $a_0 = 2a_2$ and $a_1 = -2a_2 - 3a_3$ respectively. then we obtain (02)

$$p(x) = 2a_2 + (-2a_2 - 3a_3)x + a_2x^2 + a_3x^3$$

= $(2 - 2x + x^2)a_2 + (-3x + x^3)a_3$,

hence $W = \langle 2 - 2x + x^2, -3x + x^3 \rangle$, also we have $\{2 - 2x + x^2, -3x + x^3\}$ is linearly independent, thus the set $\{2 - 2x + x^2, -3x + x^3\}$ is a basis of W.

Consequently $\dim W = 2$.

(0.25)

(1.50)

Exercise 02: (03 points)

Let H_1 , H_2 and H_3 be three subspaces of \mathbb{R}^3 defined by

$$H_1 = \{(x, y, 0) ; x, y \in \mathbb{R}\}, \quad H_2 = \{(0, y, z) ; y, z \in \mathbb{R}\}, \\ H_3 = \{(0, 0, z) ; z \in \mathbb{R}\}.$$

1• Are H_1 and H_2 a direct sum of \mathbb{R}^3 ? Justify your answer.

No they are not because $H_1 \cap H_2 = (0, 1, 0) \neq \{0_{\mathbb{R}^3}\}$.

2• Prove that $\mathbb{R}^3 = H_1 \oplus H_3$.

Let $(x, y, z) \in \mathbb{R}^3$, we have (x, y, z) = (x, y, 0) + (0, 0, z), thus $(x, y, z) \in H_1 + H_3$, hence $\mathbb{R}^3 \subset H_1 + H_3$, since $\mathbb{R} \subset \mathbb{R}^3$ and $H_1 \subset \mathbb{R}^3$ then $H_1 + H_3 \subset \mathbb{R}^3$, for that we obtain $\mathbb{R}^3 = H_1 + H_3$. (01)

(01)

Let
$$(x, y, z) \in H_1 \cap H_3$$
, then
$$\begin{cases} (x, y, z) \in H_1 \\ \land \\ (x, y, z) \in H_3 \end{cases} \Rightarrow \begin{cases} z = 0 \\ \land \\ x = y = 0 \end{cases} \Rightarrow (x, y, z) = (0, 0, 0), \qquad (01)$$

then $H_1 \cap H_3 = \{0_{\mathbb{R}^3}\}$. Thus $\mathbb{R}^3 = H_1 \oplus H_3$.

Exercise 03: (04 points) Let A be a matrix defined as:

$$A = \left(\begin{array}{rrrr} 3 & 0 & 1 \\ -1 & 3 & -2 \\ -1 & 1 & 0 \end{array}\right).$$

1• Calculate $(A - 2I)^3$, then deduce that A is invertible.

$$(A - 2I)^{3} = (A - 2I)^{2}(A - 2I),$$
We have $(A - 2I) = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -2 \\ -1 & 1 & -2 \end{pmatrix}$
(0.50)
first we calculate $(A - 2I)^{2}$

first we calculate $(A - 2I)^2$.

$$(A-2I)^{2} = (A-2I)(A-2I) = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -2 \\ -1 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -2 \\ -1 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$

$$(01)$$

Hence
$$(A-2I)^3 = \begin{pmatrix} 0 & -1 & -1 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & -1 \\ -1 & 1 & -2 \\ -1 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (01)

we have $(A - 2I)^3 = A^3 - 6A^2 + 12A - 8I = 0_{\mathcal{M}_3(\mathbb{R})}$

so we obtain
$$A(\frac{1}{8}A^2 - \frac{3}{4}A + \frac{3}{2}I) = I.$$
 (01)

hence A is invertible.

2• Define
$$A^{-1}$$
 in terms of I , A and A^2 .
 $A^{-1} = \frac{1}{8}A^2 - \frac{3}{4}A + \frac{3}{2}I.$
(0.50)

Exercise 04: (09 points) I)Let f be a map defined as:

$$\begin{array}{rccc} f: & \mathbb{R}^3 & \rightarrow & \mathbb{R}^3 \\ & (x,y,z) & \mapsto & f((x,y,z)) = (-x+y+z,x-y+z,x+y-z). \end{array}$$

1• Prove that f is endomorphism.

Let $u = (x, y, z), v = (x', y', z') \in \mathbb{R}^3$, let $\alpha, \beta \in \mathbb{R}$. Then

 $\begin{aligned} f(\alpha u + \beta v) \\ &= f((\alpha x + \beta x', \alpha y + \beta y', \alpha z + \beta z')) \\ &= (-(\alpha x + \beta x') + (\alpha y + \beta y') + (\alpha z + \beta z'), (\alpha x + \beta x') - (\alpha y + \beta y') + (\alpha z + \beta z'), (\alpha x + \beta x') + (\alpha y + \beta y') - (\alpha z + \beta z')) \\ &= (-\alpha x + \alpha y + \alpha z, \alpha x - \alpha y + \alpha z, \alpha x + \alpha y - \alpha z) + (-\beta x' + \beta y' + \beta z', \beta x' - \beta y' + \beta z', \beta x' + \beta y' - \beta z') \quad (01.50) \\ &= \alpha f(u) + \beta f(v). \end{aligned}$

Hence f is endomorphism of \mathbb{R}^3 .

2• Define a basis of ker f and a basis of imf.

ker $f = \{u \in \mathbb{R}^3, f(u) = 0_{\mathbb{R}^3}\}$, then we get

 $\begin{cases} -x+y+z=0\\ x-y+z=0\\ x+y-z=0 \end{cases} \Rightarrow \begin{cases} x=0\\ y=0\\ z=0 \end{cases}$

Hence ker $f = \{(0,0,0)\}$ witch means dim ker f = 0, we conclude that empty set is the basis of ker f.

By dim \mathbb{R}^3 = dim ker f + dim imf, we get that dim imf = 3, hence $imf = \mathbb{R}^3$, we choose the canonical basis of \mathbb{R}^3 witch is $\mathcal{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$. (0.50)

(0.50)

(0.25)

(0.25)

 $3 \bullet$ Does f injective? surjective? bijective? Justify your answer.

We have ker
$$f = \{0_{\mathbb{R}^3}\}$$
, thus f is injective, (0.25)

f surjective because $imf = \mathbb{R}^3$,

f is injective and surjective thus f is bijective.

II) Let $\mathcal{B}' = \{u_1 = (1,1,1), u_2 = (1,0,1), u_3 = (0,0,1)\}$ be a basis of \mathbb{R}^3 . Let M be the matrix of f with respect to the basis \mathcal{B}' . 1• Prove that

$$M = \left(\begin{array}{rrrr} 1 & 2 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array}\right).$$

To define M we write $f(u_1)$, $f(u_2)$ and $f(u_3)$ in term of u_1 , u_2 and u_3 .

So
$$f(u_1) = f((1,1,1)) = (1,1,1)$$
.

Thus
$$f(u_1) = 1u_1 + 0u_2 + 0u_3$$
, (0.50)

$$f(u_2) = f((1, 0, 1)) = (0, 2, 0).$$

We put $f(u_2) = \lambda 1 u_1 + \lambda_2 u_2 + \lambda_3 u_3$, then after small calculation we obtain $f(u_2) = 2u_1 - 2u_2 + 0u_3$. (0.75) $f(u_3) = f((0,0,1)) = (1,1,-1),$ by the same way we get $f(u_3) = 1u_1 + 0u_2 - 2u_3.$

Thus

$$M = \left(\begin{array}{rrrr} 1 & 2 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array}\right).$$

2• Prove that M is invertible, and define M^{-1} .

M is invertible because $\det M = 1(-2)(-2) = 4 \neq 0$.

$$Co(M) = \begin{pmatrix} + \begin{vmatrix} -2 & 0 \\ 0 & -2 \end{vmatrix} - \begin{vmatrix} 0 & 0 \\ 0 & -2 \end{vmatrix} + \begin{vmatrix} 0 & -2 \\ 0 & -2 \end{vmatrix} + \begin{vmatrix} 0 & -2 \\ 0 & -2 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 0 & -2 \end{vmatrix} - \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 4 & -2 & 0 \\ 2 & 0 & -2 \end{pmatrix}$$
(2.50)

$$\Rightarrow Adj(M) = Co(M)^{t} = \begin{pmatrix} 4 & 4 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & \frac{1}{2} \end{pmatrix}$$
(0.25)

Hence
$$M^{-1} = \frac{1}{\det M} Adj(M) = \begin{pmatrix} 1 & 1 & 2\\ 0 & -\frac{1}{2} & 0\\ 0 & 0 & -\frac{1}{2} \end{pmatrix}$$
. (0.50)

(0.75)

(0.50)