ALGEBRA 2 FINAL EXAM CORRECTION

Exercise 01: (04 points)
I) Let $P_{3}(\mathbb{R})$ be the vector space of polynomials with real coefficients and degree at most 3 . Let

$$
W=\left\{p \in P_{3}(\mathbb{R}): p(0)=p^{\prime \prime}(0) \text { and } p^{\prime}(1)=0\right\}
$$

where p^{\prime} and $p^{\prime \prime}$ are the first and the second derivative of p respectively.
1- Prove that W is a subspace of $P_{3}(\mathbb{R})$.
Denote $p_{0}(x)=0_{P_{3}(\mathbb{R})}$. Then $p_{0}(x)=0, \forall x \in \mathbb{R}$.
We have $p_{0}(0)=p_{0}^{\prime \prime}(0)=0$, and $p_{0}^{\prime}(1)=0$. Hence $p_{0} \in W$, thus $W \neq \phi$.
Let $p_{1}, \quad p_{2} \in W$, then we have

$$
\left\{\begin{array}{l}
p_{1}(0)=p_{1}^{\prime \prime}(0) \text { and } p_{1}^{\prime}(1)=0 \\
p_{2}(0)=p_{2}^{\prime \prime}(0) \text { and } p_{2}^{\prime}(1)=0
\end{array}\right.
$$

thus

$$
\left\{\begin{array}{c}
p_{1}(0)+p_{2}(0)=p_{1}^{\prime \prime}(0)+p_{2}^{\prime \prime}(0) \tag{1.50}\\
\text { and } \\
p_{1}^{\prime}(1)+p_{2}^{\prime}(1)=0
\end{array}\right.
$$

hence $p_{1}+p_{2} \in W$.
Let $\alpha \in \mathbb{R}$, let $p \in W$, we have

$$
p(0)=p^{\prime \prime}(0) \text { and } p^{\prime}(1)=0
$$

thus

$$
\alpha p(0)=\alpha p^{\prime \prime}(0) \text { and } \alpha p^{\prime}(1)=\alpha 0=0 .
$$

hence $\alpha p \in W$.
thus W is a subspace of $P_{3}(\mathbb{R})$.
2• Find a basis of W. Deduce the dimension of W.
let $p \in W$ such that $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$, with $a_{i} \in \mathbb{R}, 0 \leq i \leq 3$, then by the condition $p(0)=p^{\prime \prime}(0)$ and $p^{\prime}(1)=0$, we get $a_{0}=2 a_{2}$ and $a_{1}=-2 a_{2}-3 a_{3}$ respectively. then we obtain

$$
\begin{align*}
p(x) & =2 a_{2}+\left(-2 a_{2}-3 a_{3}\right) x+a_{2} x^{2}+a_{3} x^{3} \tag{02}\\
& =\left(2-2 x+x^{2}\right) a_{2}+\left(-3 x+x^{3}\right) a_{3}
\end{align*}
$$

hence $W=\left\langle 2-2 x+x^{2},-3 x+x^{3}\right\rangle$, also we have $\left\{2-2 x+x^{2},-3 x+x^{3}\right\}$ is linearly independent, thus the set $\left\{2-2 x+x^{2},-3 x+x^{3}\right\}$ is a basis of W.

Consequently $\operatorname{dim} W=2$.

Exercise 02: (03 points)
Let H_{1}, H_{2} and H_{3} be three subspaces of \mathbb{R}^{3} defined by

$$
\begin{aligned}
& H_{1}=\{(x, y, 0) ; x, y \in \mathbb{R}\}, \quad H_{2}=\{(0, y, z) ; y, z \in \mathbb{R}\}, \\
& H_{3}=\{(0,0, z) ; z \in \mathbb{R}\}
\end{aligned}
$$

1- Are H_{1} and H_{2} a direct sum of \mathbb{R}^{3} ? Justify your answer.
No they are not because $H_{1} \cap H_{2}=(0,1,0) \neq\left\{0_{\mathbb{R}^{3}}\right\}$.
2• Prove that $\mathbb{R}^{3}=H_{1} \oplus H_{3}$.
Let $(x, y, z) \in \mathbb{R}^{3}$, we have $(x, y, z)=(x, y, 0)+(0,0, z)$, thus $(x, y, z) \in H_{1}+H_{3}$, hence $\mathbb{R}^{3} \subset H_{1}+H_{3}$,
since $H_{1} \subset \mathbb{R}^{3}$ and $H_{1} \subset \mathbb{R}^{3}$ then $H_{1}+H_{3} \subset \mathbb{R}^{3}$, , for that we obtain $\mathbb{R}^{3}=H_{1}+H_{3}$.
Let $(x, y, z) \in H_{1} \cap H_{3}$, then $\left\{\begin{array}{c}(x, y, z) \in H_{1} \\ \wedge \\ (x, y, z) \in H_{3}\end{array} \Rightarrow\left\{\begin{array}{c}z=0 \\ \wedge \\ x=y=0\end{array} \Rightarrow(x, y, z)=(0,0,0)\right.\right.$,
then $H_{1} \cap H_{3}=\left\{0_{\mathbb{R}^{3}}\right\}$.Thus $\mathbb{R}^{3}=H_{1} \oplus H_{3}$.
Exercise 03: (04 points)
Let A be a matrix defined as:

$$
A=\left(\begin{array}{ccc}
3 & 0 & 1 \\
-1 & 3 & -2 \\
-1 & 1 & 0
\end{array}\right)
$$

1- Calculate $(A-2 I)^{3}$, then deduce that A is invertible.
$(A-2 I)^{3}=(A-2 I)^{2}(A-2 I)$,
We have $(A-2 I)=\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & -2 \\ -1 & 1 & -2\end{array}\right)$
first we calculate $(A-2 I)^{2}$.
$(A-2 I)^{2}=(A-2 I)(A-2 I)=\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & -2 \\ -1 & 1 & -2\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & -2 \\ -1 & 1 & -2\end{array}\right)=\left(\begin{array}{ccc}0 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & -1 & 1\end{array}\right)$
Hence $(A-2 I)^{3}=\left(\begin{array}{ccc}0 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & -1 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & -2 \\ -1 & 1 & -2\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
we have $(A-2 I)^{3}=A^{3}-6 A^{2}+12 A-8 I=0_{\mathcal{M}_{3}(\mathbb{R})}$
so we obtain $A\left(\frac{1}{8} A^{2}-\frac{3}{4} A+\frac{3}{2} I\right)=I$.
hence A is invertible.
2- Define A^{-1} in terms of I, A and A^{2}.
$A^{-1}=\frac{1}{8} A^{2}-\frac{3}{4} A+\frac{3}{2} I$.

Exercise 04: (09 points)
I)Let f be a map defined as:

$$
\begin{aligned}
& f: \mathbb{R}^{3} \\
& \rightarrow \mathbb{R}^{3} \\
&(x, y, z) \mapsto f((x, y, z))=(-x+y+z, x-y+z, x+y-z) .
\end{aligned}
$$

1- Prove that f is endomorphism.
Let $u=(x, y, z), v=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in \mathbb{R}^{3}$, let $\alpha, \beta \in \mathbb{R}$.
Then

$$
\begin{aligned}
& f(\alpha u+\beta v) \\
& =f\left(\left(\alpha x+\beta x^{\prime}, \alpha y+\beta y^{\prime}, \alpha z+\beta z^{\prime}\right)\right) \\
& =\left(-\left(\alpha x+\beta x^{\prime}\right)+\left(\alpha y+\beta y^{\prime}\right)+\left(\alpha z+\beta z^{\prime}\right),\left(\alpha x+\beta x^{\prime}\right)-\left(\alpha y+\beta y^{\prime}\right)+\left(\alpha z+\beta z^{\prime}\right),\left(\alpha x+\beta x^{\prime}\right)+\left(\alpha y+\beta y^{\prime}\right)-\left(\alpha z+\beta z^{\prime}\right)\right) \\
& =(-\alpha x+\alpha y+\alpha z, \alpha x-\alpha y+\alpha z, \alpha x+\alpha y-\alpha z)+\left(-\beta x^{\prime}+\beta y^{\prime}+\beta z^{\prime}, \beta x^{\prime}-\beta y^{\prime}+\beta z^{\prime}, \beta x^{\prime}+\beta y^{\prime}-\beta z^{\prime}\right) \\
& =\alpha f(u)+\beta f(v)
\end{aligned}
$$

Hence f is endomorphism of \mathbb{R}^{3}.
2- Define a basis of $\operatorname{ker} f$ and a basis of $i m f$.
ker $f=\left\{u \in \mathbb{R}^{3}, f(u)=0_{\mathbb{R}^{3}}\right\}$, then we get

$$
\left\{\begin{array} { r }
{ - x + y + z = 0 } \\
{ x - y + z = 0 } \\
{ x + y - z = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=0 \\
y=0 \\
z=0
\end{array}\right.\right.
$$

Hence $\operatorname{ker} f=\{(0,0,0)\}$ witch means $\operatorname{dim} \operatorname{ker} f=0$, we conclude that empty set is the basis of ker f.

By $\operatorname{dim} \mathbb{R}^{3}=\operatorname{dim} \operatorname{ker} f+\operatorname{dim} \operatorname{imf}$, we get that $\operatorname{dim} \operatorname{imf}=3$, hence $\operatorname{imf}=\mathbb{R}^{3}$, we choose the canonical basis of \mathbb{R}^{3} witch is $\mathcal{B}=\{(1,0,0),(0,1,0),(0,0,1)\}$.

3• Does f injective? surjective? bijective? Justify your answer.
We have ker $f=\left\{0_{\mathbb{R}^{3}}\right\}$, thus f is injective,
f surjective because $i m f=\mathbb{R}^{3}$,
f is injective and surjective thus f is bijective.
II) Let $\mathcal{B}^{\prime}=\left\{u_{1}=(1,1,1), u_{2}=(1,0,1), u_{3}=(0,0,1)\right\}$ be a basis of \mathbb{R}^{3}. Let M be the matrix of f with respect to the basis \mathcal{B}^{\prime}.
1- Prove that

$$
M=\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

To define M we write $f\left(u_{1}\right), f\left(u_{2}\right)$ and $f\left(u_{3}\right)$ in term of u_{1}, u_{2} and u_{3}.
So $f\left(u_{1}\right)=f((1,1,1))=(1,1,1)$.
Thus $f\left(u_{1}\right)=1 u_{1}+0 u_{2}+0 u_{3}$,
$f\left(u_{2}\right)=f((1,0,1))=(0,2,0)$.
We put $f\left(u_{2}\right)=\lambda 1 u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3}$,
then after small calculation we obtain $f\left(u_{2}\right)=2 u_{1}-2 u_{2}+0 u_{3}$.
$f\left(u_{3}\right)=f((0,0,1))=(1,1,-1)$,
by the same way we get $f\left(u_{3}\right)=1 u_{1}+0 u_{2}-2 u_{3}$.
Thus

$$
M=\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

2• Prove that M is invertible, and define M^{-1}.
\mathbf{M} is invertible because $\operatorname{det} M=1(-2)(-2)=4 \neq 0$.
$C o(M)=\left(\begin{array}{ccc}+\left|\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right| & -\left|\begin{array}{cc}0 & 0 \\ 0 & -2 \\ 1 & 1 \\ 0 & -2\end{array}\right| & +\left|\begin{array}{cc}0 & -2 \\ 0 & 0\end{array}\right| \\ -\left|\begin{array}{cc}1 & 2 \\ 2 & 1 \\ 0 & -2 \\ 2 & 1 \\ -2 & 0\end{array}\right| & -\left|\begin{array}{cc}1 & 1 \\ 0 & 0\end{array}\right| & +\left|\begin{array}{cc}1 & 2 \\ 0 & -2\end{array}\right|\end{array}\right)=\left(\begin{array}{ccc}4 & 0 & 0 \\ 4 & -2 & 0 \\ 2 & 0 & -2\end{array}\right)$
$\Rightarrow \operatorname{Adj}(M)=\operatorname{Co}(M)^{t}=\left(\begin{array}{ccc}4 & 4 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right)$
Hence $M^{-1}=\frac{1}{\operatorname{det} M} \operatorname{Adj}(M)=\left(\begin{array}{ccc}1 & 1 & \frac{1}{2} \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2}\end{array}\right) .$.

