Department of Science and Technology Subject: Mathematics 2

Correction of The final Exam

Solution Ex 1. (4 pts)

Answer two questions ($\mathbf{2 p t}$) $\times \mathbf{2}$
(1) Proving that f is a linear map.
(i) Let $X=\left(x_{1}, x_{2}, x_{3}\right)^{t}, Y=\left(y_{1}, y_{2}, y_{3}\right)^{t} \in \mathbb{R}^{3}$. Then, we have

$$
\begin{aligned}
f(X+Y) & =f\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right) \\
& =\left(\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)+\left(x_{3}+y_{3}\right), 2\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)-\left(x_{3}+y_{3}\right)\right) \\
& =\left(\left(x_{1}+x_{2}+x_{3}\right)+\left(y_{1}+y_{2}+y_{3}\right),\left(2 x_{1}+x_{2}-x_{3}\right)+\left(2 y_{1}+y_{2}-y_{3}\right)\right) \\
& =\left(x_{1}+x_{2}+x_{3}, 2 x_{1}+x_{2}-x_{3}\right)+\left(y_{1}+y_{2}+y_{3}, 2 y_{1}+y_{2}-y_{3}\right) \\
& =f(X)+f(Y) .
\end{aligned}
$$

(ii) Let $X=\left(x_{1}, x_{2}, x_{3}\right)^{t} \in \mathbb{R}^{3}$ and $\lambda \in \mathbb{R}$.

$$
\begin{aligned}
f(\lambda X) & =f\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}\right) \\
& =\left(\lambda x_{1}+\lambda x_{2}+\lambda x_{3}, 2 \lambda x_{1}+\lambda x_{2}-\lambda x_{3}\right) \\
& =\left(\lambda\left(x_{1}+x_{2}+x_{3}\right), \lambda\left(2 x_{1}+x_{2}-x_{3}\right)\right) \\
& =\lambda\left(x_{1}+x_{2}+x_{3}, 2 x_{1}+x_{2}-x_{3}\right) \\
& =\lambda f(X) .
\end{aligned}
$$

Therefore, from (i) and (ii) we deduce that $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a linear map.
(2) Consider the set $E=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$.
(i) Clearly, E is a non-empty set, since $0_{\mathbb{R}^{3}} \in E .0 .5 \mathrm{pt}$
(ii) Let $X=\left(x_{1}, x_{2}, x_{3}\right)^{t}, Y=\left(y_{1}, y_{2}, y_{3}\right)^{t} \in \mathbb{R}^{3}$. Then we have

$$
\begin{aligned}
X, Y \in E & \Leftrightarrow\left(x_{1}+x_{2}+x_{3}=0\right) \text { and }\left(y_{1}+y_{2}+y_{3}=0\right) \\
& \Rightarrow\left(x_{1}+x_{2}+x_{3}\right)+\left(y_{1}+y_{2}+y_{3}=0\right) \quad 1 \mathrm{pt} \\
& \Rightarrow\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)+\left(x_{3}+y_{3}\right)=0 \\
& \Rightarrow X+Y \in E
\end{aligned}
$$

(iii) Let $X=\left(x_{1}, x_{2}, x_{3}\right)^{t} \in \mathbb{R}^{3}$ and $\lambda \in \mathbb{R}$.

$$
\begin{aligned}
X \in E & \Leftrightarrow x_{1}+x_{2}+x_{3}=0 \\
& \Leftrightarrow \lambda\left(x_{1}+x_{2}+x_{3}\right)=0 \quad 0.5 \mathrm{pt} \\
& \Leftrightarrow \lambda x_{1}+\lambda x_{2}+\lambda x_{3}=0 \\
& \Leftrightarrow \lambda X \in E
\end{aligned}
$$

From (i),(ii) and (iii) we deduce that E is a sub-vector space of \mathbb{R}^{3}.
(3) Consider the sub-vector space $F=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+3 y-2 z=0\right\}$. Let $X=(x, y, z)^{t} \in F$, then we have $x+3 y-2 z=0$, hence $x=-3 y+2 z$. Hence

$$
\begin{aligned}
X=(x, y, z) & \Leftrightarrow X=(-3 y+2 z, y, z) \quad 0.5 \mathrm{pt} \\
& \Leftrightarrow X=(-3 y, y, 0)+(2 z, 0, z) \\
& \Leftrightarrow X=y(-3,1,0)+z(2,0,1),
\end{aligned}
$$

from which it follows that $B=\{(-3,1,0),(2,0,1)\}$ generates the sub-space F. Moreover, clearly 0.5 pt the set $\{(-3,1,0),(2,0,1)\}$ is linear independent. Thus $B=\{(-3,1,0),(2,0,1)\}$ is a basis for F. The dimension of F is two $\operatorname{dim} F=\operatorname{card}(B)=2 . \quad 0.5 \mathrm{pt}$

$$
0.5 \mathrm{pt}
$$

(4) We use the change of variable to determinate the primitive $\int \sin ^{3} x \cos ^{2} x \mathrm{~d} x$. Set $t=\cos x$
$d t=-\sin x \mathrm{~d} x$. so $d t=-\sin x \mathrm{~d} x$.

$$
\begin{aligned}
0.25 \mathrm{pt} \\
\qquad \begin{aligned}
\int \sin ^{3} x \cos ^{2} x \mathrm{~d} x & =\int\left(1-\cos ^{2} x\right) \cos ^{2} x \sin x \mathrm{~d} x \\
& =-\int\left(1-t^{2}\right) t^{2} \mathrm{~d} t 0.5 \mathrm{pt} \\
& =\int\left(t^{4}-t^{2}\right) \mathrm{d} t \\
& =\frac{1}{5} t^{5}-\frac{1}{3} t^{3}+c 0.5 \mathrm{pt} \\
& =\frac{1}{5} \cos ^{5} x-\frac{1}{3} \cos ^{3} x+c \quad 0.5 \mathrm{pt}
\end{aligned}
\end{aligned}
$$

0.25 pt

$$
\begin{aligned}
\int_{0}^{\pi} \frac{\sin (t)}{1+\cos ^{2}(t)} \mathrm{d} t & =-\int_{1}^{-1} \frac{1}{1+x^{2}} \mathrm{~d} x \quad 0.5 \mathrm{pt} \\
& =\int_{-1}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x \\
& =[\arctan (x)\}_{x=-1}^{x=1} \quad 0.5 \mathrm{pt} \\
& =\arctan (1)-\arctan (-1) \quad 0.25 \mathrm{pt} \\
& =\frac{\pi}{4}-\frac{-\pi}{4}=\frac{\pi}{2} 0.25 \mathrm{pt}
\end{aligned}
$$

Solution Ex 2. (10 pts)

1) In order to show that $A^{2}+A-2 I_{3}=0$ we should first calculate A^{2}.

$$
\begin{aligned}
A^{2} & =A \cdot A \\
& =\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right) \cdot\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right) \quad 1 \mathrm{pt}
\end{aligned}
$$

We pass to calculate $A^{2}+A-2 I$

$$
\begin{aligned}
A^{2}+A-2 I & =\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right)+\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right)-2\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad 0.5 \mathrm{pt} \\
& =\left(\begin{array}{ccc}
3-1-2 & -1+1+0 & -1+1+0 \\
-1+1+0 & 3-1-2 & -1+1+0 \\
-1+1+0 & -1+1+0 & 3-2-1
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad 0.5 \mathrm{pt}
\end{aligned}
$$

therefore, $A^{2}+A-2 I=0$.
2) We have

$$
\begin{aligned}
A^{2}+A-2 I=0 & \Leftrightarrow A^{2}+A=2 I \\
& \Leftrightarrow A \cdot \frac{1}{2}(A+I)=I \quad 1 \mathrm{pt}
\end{aligned}
$$

Thus, by definition A is invertible with $A^{-1}=\frac{1}{2}(A+I) . \quad 0.5 \mathrm{pt}$

$$
A^{-1}=\frac{1}{2}(A+I)=\frac{1}{2}\left(\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right)+\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) \quad 1 \mathrm{pt}
$$

3) Consider the system

$$
\text { (S) } \quad\left\{\begin{array}{r}
-x+y+z=4 \\
x-y+z=2 \\
x+y-z=0
\end{array}\right.
$$

(a) The system (S) can be written if matrix formulation $A X=B$ where

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right), \quad X=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad B=\left(\begin{array}{l}
4 \\
2 \\
0
\end{array}\right)
$$

First, we calculate $\operatorname{det}(A)$.

$$
\operatorname{det}(A)=\left|\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right|=-1\left|\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right|-1\left|\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right|+1\left|\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right|=-1(0)-1(-2)+1(2)=4 . \quad 1 \mathrm{pt}
$$

Since $\operatorname{det}(A) \neq 0$, so the system has a unique solution, given by 0.5 pt

$$
\begin{aligned}
& x=\frac{\operatorname{det}\left(A_{x}\right)}{\operatorname{det}(A)}=\frac{\left|\begin{array}{ccc}
4 & 1 & 1 \\
2 & -1 & 1 \\
0 & 1 & -1
\end{array}\right|}{\left|\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right|}=\frac{4}{4}=1 \quad 0.5 \mathrm{pt} \\
& y=\frac{\operatorname{det}\left(A_{y}\right)}{\operatorname{det}(A)}=\frac{\left|\begin{array}{ccc}
-1 & 4 & 1 \\
1 & 2 & 1 \\
1 & 0 & -1
\end{array}\right|}{\left|\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right|}=\frac{8}{4}=2 \quad 0.5 \mathrm{pt} \\
& z=\frac{\operatorname{det}\left(A_{z}\right)}{\operatorname{det}(A)}=\frac{\left|\begin{array}{ccc}
-1 & 1 & 4 \\
1 & -1 & 2 \\
1 & 1 & -0
\end{array}\right|}{\left|\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right|}=\frac{12}{4}=3 \quad 0.5 \mathrm{pt}
\end{aligned}
$$

Therefore $(x, y, z)=(1,2,3)$.
(b) Now, we pass to solve the system (S) by using the inverse matrix method. The system (S) takes the form $A X=B$, so its solution is given by $X=A^{-1} B$. 1pt

$$
X=A^{-1} B=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad 1 \mathrm{pt}
$$

Solution Ex 3. (6 pts)

1) Let $x \in \mathbb{R} /\{0,1\}$.

$$
\frac{a}{x}+\frac{b}{x-1}=\frac{a(x-1)+b x}{x(x-1)}=\frac{x(a+b)-a}{x(x-1)} \quad 1 \mathrm{pt}
$$

by identification we find $a+b=0$ and $a=-1$, so $a_{0.5} \overline{\overline{5} p t}-1$ and $b_{0.5}=1$.
2)By the use the previous result

$$
\begin{aligned}
\int \frac{1}{x(x-1)} \mathrm{d} x & =\int \frac{-1}{x} \mathrm{~d} x+\int \frac{1}{x-1} \mathrm{~d} x \quad 0.5 \mathrm{pt} \\
& =-\ln |x|+\ln |x-1|+c \quad 0.5 \mathrm{pt}
\end{aligned}
$$

3) Consider the differential equation

$$
y^{\prime}-y=\frac{e^{x}}{x(x-1)}
$$

Let y_{h} be solution of the homogeneous differential equation. Therefore $y_{h}^{\prime}-y_{h}=0$. This equation of the form $y^{\prime}-a y=0$ with $a=1$ so its solution is given by $y_{h}=\lambda e^{x}$ where $\lambda \in \mathbb{R}$.

Now, we search for a particular solution y_{p}. Suppose that $y_{p}(x)=\underset{0.5 \mathrm{pt}}{\lambda(x)} e^{x}$, so

$$
\begin{aligned}
y_{p}^{\prime}-y_{p}=\frac{e^{x}}{x(x-1)} & \Rightarrow\left(\lambda(x) e^{x}\right)^{\prime}-e^{x}=\frac{e^{x}}{x(x-1)} \\
& \Rightarrow \lambda^{\prime}(x) e^{x}-\lambda(x) e^{x}+\lambda(x) e^{x}=\frac{e^{x}}{x(x-1)} \\
& \Rightarrow \lambda^{\prime}(x)=\frac{1}{x(x-1)} \\
& \Rightarrow \lambda(x)=\ln |x-1|-\ln |x| . \quad 1 \mathrm{pt}
\end{aligned}
$$

Thus, $y_{p}(x)=(\ln |x-1|-\ln |x|) e^{x}$. Consequently the general solution is given by

$$
y=y_{h}+y_{p}=(\ln |x-1|-\ln |x|+\lambda) e^{x}, \quad \lambda \in \mathbb{R} . \quad 0.5 \mathrm{pt}
$$

