

Differential Geometry (DG)-(L3-Maths)-

Correction of Final Exam

27 mai 2024

\qquad

Correction of exercises

Correction of Exercice 1 -

1. $1 \mathrm{pt} \Rightarrow$ Let $M \subset \mathbb{R}^{n}$ be a 0 -dimensional submanifold and $p \in M$. Through the characterization by immersion and homeorphism, there exists an open neighbourhood $U_{p} \subset \mathbb{R}^{n}$ of p such that $U_{p} \cap M$ is homeomorphic to an open nonempty set $\Omega \subset \mathbb{R}^{0}=\{0\}$. This means that

$$
\psi:\{0\} \rightarrow U_{p} \cap M
$$

is bijective. So

$$
\operatorname{Card}\left(U_{p} \cap M\right)=\operatorname{Card}(\{0\})=1
$$

Hence

$$
U_{p} \cap M=\{p\}
$$

and M is discrete.
$1 \mathrm{pt} \Leftarrow \operatorname{Le} M \subset \mathbb{R}^{n}$ be a discrete set and $p \in M$. By the definition, there exists an open set $U_{p} \subset \mathbb{R}^{n}$ of puch that

$$
U_{p} \cap M=\{p\} .
$$

Let us consider the following diffeomorphism (constant mapping)

$$
\psi: U_{p} \rightarrow \Omega=\{0\}
$$

such that $\psi(p)=0$. Therefore, we get

$$
\psi\left(U_{p} \cap M\right)=\psi(\{p\})=\{0\}=\mathbb{R}^{0}=\left(\mathbb{R}^{0} \times\{0\}^{n}\right) \cap \Omega .
$$

Then, using the definition of the submanifold (coordinate charts), we obtain that $M \subset \mathbb{R}^{n}$ be a 0 dimensional submanifold.
2. $1 \mathrm{pt} \Rightarrow$ Let $M \subset \mathbb{R}^{d}$ be a d-dimensional submanifold and $p \in M$. Through the characterization by submersion, there exist an open neighbourhood $U_{p} \subset \mathbb{R}^{d}$ of p and a submersion g such that

$$
g: U_{p} \rightarrow \mathbb{R}^{d-d}=\{0\}
$$

and

$$
g^{-1}(\{0\})=U_{p} \cap M .
$$

As for any $x \in U_{p}$, we have $g(x)=0$, this implies

$$
U_{p}=g^{-1}(\{0\})=U_{p} \cap M .
$$

Hence

$$
p \in U_{p} \subset M .
$$

Consequently, $M=\cup_{p \in M} U_{p}$ and so M is an open set as a union of open sets.
$1 \mathrm{pt} \Rightarrow$ Conversely, let $p \in M$. Since M is open, there exists an open neighbourhood θ_{p} such that

$$
p \in \theta_{p} \subset M \subset \mathbb{R}^{d} .
$$

Let us consider the following diffeomorphism (Identitity mapping $I_{M}(x)=x$, for any $x \in M$)

$$
I_{M}: M \rightarrow M .
$$

Hence (having in mind that $\mathbb{R}^{d} \times\{0\}^{0}=\mathbb{R}^{d}$)

$$
I_{M}\left(\theta_{p} \cap M\right)=\theta_{p}=\left(\mathbb{R}^{d} \times\{0\}^{0}\right) \cap \theta_{p} .
$$

This yields that M is a d-dimensional submanifold.

Correction of Exercice 2 -

1). Let $p=(x, y, z) \in M$ et let us consider the following \mathscr{C}^{∞}-mapping 881 pt

$$
\begin{array}{ll}
g: & U_{p}=\mathbb{R}^{3}-\Omega \rightarrow \mathbb{R}^{2} \\
& (x, y, z) \mapsto\left(x^{2}+4 y^{2}-1, z-x^{2}+4 y^{2}\right),
\end{array}
$$

where

$$
\Omega=\{(0,0, z), z \in \mathbb{R}\} .
$$

Obviously, $p \in U_{p} \in \tau_{\mathbb{R}^{3}}$ since $0^{2}+4 \times 0^{2} \neq 1$.
2 pt We have the Jacobian matrix of g is given by

$$
J(g)_{(x, y, z)}=\left(\begin{array}{ccc}
2 x & 8 y & 0 \\
-2 x & 8 y & 1
\end{array}\right)
$$

and

$$
\operatorname{det}\left(\begin{array}{cc}
2 x & 0 \\
-2 x & 1
\end{array}\right)=2 x, \quad \operatorname{det}\left(\begin{array}{cc}
8 y & 0 \\
8 y & 1
\end{array}\right)=8 y .
$$

The fact that $p \in U_{p}$ implies that $x \neq 0$ or $y \neq 0$. Therefore, g is a \mathscr{C}^{∞} submersion with $g^{-1}\left(\left\{0_{\mathbb{R}^{2}}\right\}\right)=$ $M \cap U_{p}$.
Then M is a smooth $\left(\mathscr{C}^{\infty}\right) 1$-dimensional submanifold of \mathbb{R}^{3}, i.e., $M(1, \infty, 3)$.
(1 pt 2) Let $h=\left(h_{1}, h_{2}, h_{3}\right) \in \mathbb{R}^{3}$. Using the characterization of the tangent space via a submersion, we get

$$
\begin{aligned}
T_{(p)} M=\operatorname{ker}\left(D_{p} g\right) & =\left\{h \in \mathbb{R}^{3} ; J(g)_{(x, y, z)} \cdot h=0_{\mathbb{R}^{2}}\right\} \\
& =\left\{\left(h_{1}, h_{2}, h_{3}\right) \in \mathbb{R}^{3} ; x h_{1}=-4 y h_{2}, h_{3}=2 x h_{1}-8 y h_{2}\right\} .
\end{aligned}
$$

(2 pt 3 . By routine calculation, we obtain in each case $(x \neq 0$ or $y \neq 0$), the following basis of $T_{(p)} M$:

$$
T_{(x, y, z)} M=\operatorname{span}\{(-4 y, x,-16 x y)\} .
$$

Correction of Exercice 3 -

1 pts 1 . Let $(a, b) \in M_{1} \times M_{2}$, which implies $a \in M_{1}$ and $b \in M_{2}$. Since M_{i} are d_{i}-submanifolds of $\mathbb{R}^{n_{i}}$ of class $\mathscr{C}^{k_{i}}, i=1,2$, then there exist two open neighbourhoods $U_{a} \subset \mathbb{R}^{n_{1}}, U_{b} \subset \mathbb{R}^{n_{2}}, \mathscr{C}^{k_{1}}-$ submersion g_{1} and $\mathscr{C}^{k_{2}}$-submersion g_{2} such that

$$
g_{1}: \quad U_{a} \rightarrow \mathbb{R}^{n_{1}-d_{1}} \quad \text { with } g_{1}^{-1}\left(\left\{0_{\mathbb{R}_{1}-d_{1}}\right\}\right)=U_{a} \cap M_{1}
$$

and

$$
g_{2}: \quad U_{b} \rightarrow \mathbb{R}^{n_{2}-d_{2}} \quad \text { with } g_{2}^{-1}\left(\left\{0_{\mathbb{R}^{n_{2}-d_{2}}}\right\}\right)=U_{b} \cap M_{2} .
$$

pt

Setting

$$
U_{(a, b)}:=U_{a} \times U_{b} \in \tau_{\mathbb{R}^{n_{1}+n_{2}}}
$$

$$
\begin{aligned}
g: \quad & U_{(a, b)} \rightarrow \mathbb{R}^{n_{1}-d_{1}} \times \mathbb{R}^{n_{2}-d_{2}}=\mathbb{R}^{n_{1}+n_{2}-\left(d_{2}+d_{2}\right)} \\
& (x, y) \mapsto g(x, y)=\left(g_{1}(x), g_{2}(y)\right) .
\end{aligned}
$$

Obviously, g is $\mathscr{C}^{\min \left(k_{1}, k_{2}\right)}$-mapping.
Now we show that g is a submersion. 2 pts First, we observe that

$$
J(g)_{(x, y)}=\left(\begin{array}{cc}
J\left(g_{1}\right)_{(x)} & 0 \\
0 & J\left(g_{2}\right)_{(y)}
\end{array}\right) .
$$

Since g_{1} and g_{2} are two submersions, one gets

$$
r k\left(J_{g_{1}}\right)=n_{1}-d_{1} \quad r k\left(J_{g_{2}}\right)=n_{2}-d_{2} .
$$

Consequently, there exist square matrices $N_{1}\left(\right.$ in $\left.J\left(g_{1}\right)_{(x)}\right)$ and N_{2} (in $\left.J\left(g_{2}\right)_{(y)}\right)$ such that $O\left(N_{1}\right)=$ $n_{1}-d_{1}, O\left(N_{2}\right)=n_{2}-d_{2}$ and $\operatorname{det}\left(N_{i}\right) \neq 0, i=1,2$. This yields

$$
M:=\left(\begin{array}{cc}
N_{1} & 0 \\
0 & N_{2}
\end{array}\right)
$$

is a square matrix in $J(g)_{(x, y)}$ with

$$
O(M)=O\left(N_{1}\right)+O\left(N_{2}\right)=n_{1}+n_{2}-\left(d_{1}+d_{2}\right)
$$

and

$$
\operatorname{det}(M)=\operatorname{det}\left(N_{1}\right) \times \operatorname{det}\left(N_{2}\right) \neq 0 .
$$

In view of

$$
r k\left(J_{g}\right)=O(M)=n_{1}+n_{2}-\left(d_{1}+d_{2}\right),
$$

we obtain that g is a submersion.
2 pts Next, we we show that

$$
g^{-1}\left(\left\{0_{\mathbb{R}^{n_{1}+n_{2}-\left(d_{1}+d_{2}\right)}}\right\}\right) \stackrel{?}{=} U_{(a, b)} \cap\left(M_{1} \times M_{2}\right) .
$$

We have

$$
\begin{aligned}
& g^{-1}\left(\left\{0_{\mathbb{R}^{n_{1}+n_{2}-\left(d_{1}+d_{2}\right)}}\right\}\right)=g^{-1}\left(\left\{\left(0_{\mathbb{R}^{n_{1}-d_{1}}}, 0_{\mathbb{R}^{n_{2}-d_{2}}}\right)\right\}\right) \\
& =\left\{(x, y) \in U_{(a, b)}, \quad g(x, y)=\left(0_{\mathbb{R}_{1}^{n_{1}-d_{1}}}, 0_{\mathbb{R}^{n_{2}-d_{2}}}\right)\right\} \\
& =\left\{x \in U_{a}, \quad g_{1}(x)=0_{\mathbb{R}^{n_{1}-d_{1}}} \wedge y \in U_{b}, \quad g_{2}(y)=0_{\mathbb{R}^{n_{2}-d_{2}}}\right\} \\
& =g_{1}^{-1}\left(\left\{0_{\mathbb{R}^{n_{1}-d_{1}}}\right\}\right) \times g_{2}^{-1}\left(\left\{0_{\mathbb{R}^{n_{2}-d_{2}}}\right\}\right) \\
& =\left(U_{a} \cap M_{1}\right) \times\left(U_{b} \cap M_{2}\right) \\
& =\left(U_{a} \times U_{b}\right) \cap\left(M_{1} \times M_{2}\right) \\
& =U_{(a, b)} \cap\left(M_{1} \times M_{2}\right)
\end{aligned}
$$

and we are done. Then $M_{1} \times M_{2}$ is a $\left(d_{1}+d_{2}\right)$-dimensional submanifold of $\mathbb{R}^{n_{1}+n_{2}}$ of class $\mathscr{C}^{\min \left(k_{1}, k_{2}\right)}$. 0.5 pts 2 . Following the question 1, the tangent space $T_{(a, b)}\left(M_{1} \times M_{2}\right)$ is a $\left(d_{1}+d_{2}\right)$-subspace. We have also $T_{a}\left(M_{1}\right)$ is a $\left(d_{1}\right)$-subspace and $T_{a}\left(M_{2}\right)$ is a $\left(d_{2}\right)$-subspace, which implies that

$$
\operatorname{dim}\left(T_{a}\left(M_{1}\right) \times T_{a}\left(M_{2}\right)\right)=d_{1}+d_{2}=\operatorname{dim}\left(T_{(a, b)}\left(M_{1} \times M_{2}\right)\right) .
$$

Hence it suffices to show that

$$
T_{a}\left(M_{1}\right) \times T_{a}\left(M_{2}\right) \stackrel{?}{\subset} T_{(a, b)}\left(M_{1} \times M_{2}\right) .
$$

1 pts Let $\eta, \chi>0$. Let $h=\left(h_{1}, h_{2}\right) \in T_{a}\left(M_{1}\right) \times T_{a}\left(M_{2}\right)$, then there exist two differentiable functions α and β such that

$$
\begin{aligned}
\alpha: &]-\eta, \eta\left[\rightarrow M_{1}\right. \\
& \alpha(0)=a, \quad \alpha^{\prime}(0)=h_{1} .
\end{aligned}
$$

and

$$
\begin{aligned}
\beta: &]-\chi, \chi\left[\rightarrow M_{2}\right. \\
& \beta(0)=b, \quad \beta^{\prime}(0)=h_{2} .
\end{aligned}
$$

2 pts Let observe that we can construct a differentiable function γ such that

$$
\begin{aligned}
\gamma: &]-\varepsilon, \varepsilon\left[\rightarrow M_{1} \times M_{2}\right. \\
& t \mapsto \gamma(t)=(\alpha(t), \beta(t)),
\end{aligned}
$$

where $\varepsilon=\min (\eta, \chi)>0$. Also, we have

$$
\gamma(0)=(\alpha(0), \beta(0))=(a, b)
$$

and

$$
\begin{aligned}
\gamma^{\prime}(0) & =d \gamma(0)=\left(\alpha^{\prime}(0), \beta^{\prime}(0)\right) \\
& =\left(h_{1}, h_{2}\right)=h .
\end{aligned}
$$

Therefore

$$
h \in T_{(a, b)}\left(M_{1} \times M_{2}\right) .
$$

Hence

$$
T_{a}\left(M_{1}\right) \times T_{a}\left(M_{2}\right) \subset T_{(a, b)}\left(M_{1} \times M_{2}\right)
$$

0.5 pts As we have

$$
\operatorname{dim}\left(T_{a}\left(M_{1}\right) \times T_{a}\left(M_{2}\right)\right)=\operatorname{dim}\left(T_{(a, b)}\left(M_{1} \times M_{2}\right)\right)
$$

we obtain

$$
T_{a}\left(M_{1}\right) \times T_{a}\left(M_{2}\right)=T_{(a, b)}\left(M_{1} \times M_{2}\right)
$$

