

Correction of Exercice 1 -

1. **1 pt** \Rightarrow Let $M \subset \mathbb{R}^n$ be a 0-dimensional submanifold and $p \in M$. Through the characterization by immersion and homeorphism, there exists an open neighbourhood $U_p \subset \mathbb{R}^n$ of p such that $U_p \cap M$ is homeomorphic to an open nonempty set $\Omega \subset \mathbb{R}^0 = \{0\}$. This means that

$$\psi: \{0\} \to U_p \cap M$$

is bijective. So

$$Card(U_p \cap M) = Card(\{0\}) = 1.$$

Hence

$$U_p \cap M = \{p\}$$

and *M* is discrete.

1 pt ⇐ Le $M \subset \mathbb{R}^n$ be a discrete set and $p \in M$. By the definition, there exists an open set $U_p \subset \mathbb{R}^n$ of *p* such that

$$U_p \cap M = \{p\}$$

Let us consider the following diffeomorphism (constant mapping)

$$\psi: U_p \to \Omega = \{0\}$$

such that $\psi(p) = 0$. Therefore, we get

$$\psi(U_p \cap M) = \psi(\lbrace p \rbrace) = \lbrace 0 \rbrace = \mathbb{R}^0 = (\mathbb{R}^0 \times \lbrace 0 \rbrace^n) \cap \Omega.$$

Then, using the definition of the submanifold (coordinate charts), we obtain that $M \subset \mathbb{R}^n$ be a 0-dimensional submanifold.

2. **1 pt** \Rightarrow Let $M \subset \mathbb{R}^d$ be a *d*-dimensional submanifold and $p \in M$. Through the characterization by submersion, there exist an open neighbourhood $U_p \subset \mathbb{R}^d$ of p and a submersion g such that

$$g: U_p \to \mathbb{R}^{d-d} = \{0\}$$

and

$$g^{-1}(\{0\}) = U_p \cap M.$$

As for any $x \in U_p$, we have g(x) = 0, this implies

$$U_p = g^{-1}(\{0\}) = U_p \cap M.$$

Hence

 $p \in U_p \subset M$.

Consequently, $M = \bigcup_{p \in M} U_p$ and so M is an open set as a union of open sets. **1 pt** \Rightarrow Conversely, let $p \in M$. Since M is open, there exists an open neighbourhood θ_p such that

$$p \in \theta_p \subset M \subset \mathbb{R}^d$$
.

Let us consider the following diffeomorphism (Identitity mapping $I_M(x) = x$, for any $x \in M$)

$$I_M: M \to M.$$

Hence (having in mind that $\mathbb{R}^d \times \{0\}^0 = \mathbb{R}^d$)

$$I_M(\theta_p \cap M) = \theta_p = \left(\mathbb{R}^d \times \{0\}^0\right) \cap \theta_p.$$

This yields that M is a d-dimensional submanifold.

Correction of Exercice 2 -

• 1). Let $p = (x, y, z) \in M$ et let us consider the following \mathscr{C}^{∞} -mapping $g: U_p = \mathbb{R}^3 - \Omega \rightarrow \mathbb{R}^2$ $(x, y, z) \mapsto (x^2 + 4y^2 - 1, z - x^2 + 4y^2),$ where $\Omega = \{(0, 0, z), z \in \mathbb{R}\}.$ • Obviously, $p \in U_p \in \tau_{\mathbb{R}^3}$ since $0^2 + 4 \times 0^2 \neq 1.$ • 2 pt We have the Jacobian matrix of g is given by $J(g)_{(x,y,z)} = \begin{pmatrix} 2x & 8y & 0 \\ -2x & 8y & 1 \end{pmatrix}$

and

det
$$\begin{pmatrix} 2x & 0\\ -2x & 1 \end{pmatrix} = 2x$$
, det $\begin{pmatrix} 8y & 0\\ 8y & 1 \end{pmatrix} = 8y$.

The fact that $p \in U_p$ implies that $x \neq 0$ or $y \neq 0$. Therefore, g is a \mathscr{C}^{∞} submersion with $g^{-1}(\{0_{\mathbb{R}^2}\}) =$ $M \cap U_p$.

Then M is a smooth (\mathscr{C}^{∞}) 1-dimensional submanifold of \mathbb{R}^3 , i.e., $M(1,\infty,3)$.

(1 pt 2) Let $h = (h_1, h_2, h_3) \in \mathbb{R}^3$. Using the characterization of the tangent space via a submersion, we get

$$T_{(p)}M = ker(D_pg) = \left\{h \in \mathbb{R}^3; \ J(g)_{(x,y,z)} \cdot h = 0_{\mathbb{R}^2}\right\}$$
$$= \left\{(h_1, h_2, h_3) \in \mathbb{R}^3; \ xh_1 = -4yh_2, \ h_3 = 2xh_1 - 8yh_2\right\}.$$

2 pt 3. By routine calculation, we obtain in each case ($x \neq 0$ or $y \neq 0$), the following basis of $T_{(p)}M$:

$$T_{(x,y,z)}M = span\{(-4y, x, -16xy)\}.$$

Correction of Exercice 3 –

1 pts 1. Let $(a, b) \in M_1 \times M_2$, which implies $a \in M_1$ and $b \in M_2$. Since M_i are d_i -submanifolds of \mathbb{R}^{n_i} of class \mathscr{C}^{k_i} , i = 1, 2, then there exist two open neighbourhoods $U_a \subset \mathbb{R}^{n_1}$, $U_b \subset \mathbb{R}^{n_2}$, \mathscr{C}^{k_1} submersion g_1 and \mathscr{C}^{k_2} -submersion g_2 such that

$$g_1: U_a \to \mathbb{R}^{n_1-d_1}$$
 with $g_1^{-1}(\{0_{\mathbb{R}^{n_1-d_1}}\}) = U_a \cap M_1$

and

$$g_2: U_b \to \mathbb{R}^{n_2 - d_2}$$
 with $g_2^{-1}(\{0_{\mathbb{R}^{n_2 - d_2}}\}) = U_b \cap M_2$.

1 pt

Setting

$$U_{(a,b)} := U_a \times U_b \in \tau_{\mathbb{R}^{n_1 + n_2}}$$

and

$$g: \quad U_{(a,b)} \to \mathbb{R}^{n_1-d_1} \times \mathbb{R}^{n_2-d_2} = \mathbb{R}^{n_1+n_2-(d_2+d_2)}$$

$$(x, y) \mapsto g(x, y) = (g_1(x), g_2(y)).$$

• Obviously, g is $\mathscr{C}^{\min(k_1,k_2)}$ -mapping.

Now we show that *g* is a submersion. 2 pts First, we observe that

$$J(g)_{(x,y)} = \begin{pmatrix} J(g_1)_{(x)} & 0 \\ 0 & J(g_2)_{(y)} \end{pmatrix}.$$

Since g_1 and g_2 are two submersions, one gets

$$rk(J_{g_1}) = n_1 - d_1 \quad rk(J_{g_2}) = n_2 - d_2.$$

Consequently, there exist square matrices N_1 (in $J(g_1)_{(x)}$) and N_2 (in $J(g_2)_{(y)}$) such that $O(N_1) = n_1 - d_1$, $O(N_2) = n_2 - d_2$ and det $(N_i) \neq 0$, i = 1, 2. This yields

$$M := \begin{pmatrix} N_1 & 0 \\ 0 & N_2 \end{pmatrix}$$

is a square matrix in $J(g)_{(x,y)}$ with

$$O(M) = O(N_1) + O(N_2) = n_1 + n_2 - (d_1 + d_2)$$

and

$$det (M) = det (N_1) \times det (N_2) \neq 0.$$

In view of

$$rk(J_g) = O(M) = n_1 + n_2 - (d_1 + d_2),$$

we obtain that g is a submersion. **2 pts** Next, we we show that

 $g^{-1}(\{0_{\mathbb{R}^{n_1+n_2-(d_1+d_2)}}\}) \stackrel{?}{=} U_{(a,b)} \cap (M_1 \times M_2).$

We have

$$g^{-1} \left(\left\{ 0_{\mathbb{R}^{n_1+n_2-(d_1+d_2)}} \right\} \right) = g^{-1} \left(\left\{ \left(0_{\mathbb{R}^{n_1-d_1}}, 0_{\mathbb{R}^{n_2-d_2}} \right) \right\} \right)$$

$$= \left\{ (x, y) \in U_{(a,b)}, \quad g(x, y) = \left(0_{\mathbb{R}^{n_1-d_1}}, 0_{\mathbb{R}^{n_2-d_2}} \right) \right\}$$

$$= \left\{ x \in U_a, \quad g_1(x) = 0_{\mathbb{R}^{n_1-d_1}} \land y \in U_b, \quad g_2(y) = 0_{\mathbb{R}^{n_2-d_2}} \right\}$$

$$= g_1^{-1} \left(\left\{ 0_{\mathbb{R}^{n_1-d_1}} \right\} \right) \times g_2^{-1} \left(\left\{ 0_{\mathbb{R}^{n_2-d_2}} \right\} \right)$$

$$= (U_a \cap M_1) \times (U_b \cap M_2)$$

$$= (U_a \times U_b) \cap (M_1 \times M_2)$$

$$= U_{(a,b)} \cap (M_1 \times M_2)$$

and we are done. Then $M_1 \times M_2$ is a $(d_1 + d_2)$ -dimensional submanifold of $\mathbb{R}^{n_1+n_2}$ of class $\mathscr{C}^{\min(k_1,k_2)}$. **0.5 pts** 2. Following the question 1, the tangent space $T_{(a,b)}(M_1 \times M_2)$ is a $(d_1 + d_2)$ -subspace. We have also $T_a(M_1)$ is a (d_1) -subspace and $T_a(M_2)$ is a (d_2) -subspace, which implies that

$$dim(T_a(M_1) \times T_a(M_2)) = d_1 + d_2 = dim(T_{(a,b)}(M_1 \times M_2)).$$

Hence it suffices to show that

$$T_a(M_1) \times T_a(M_2) \stackrel{?}{\subset} T_{(a,b)}(M_1 \times M_2).$$

1 pts Let $\eta, \chi > 0$. Let $h = (h_1, h_2) \in T_a(M_1) \times T_a(M_2)$, then there exist two differentiable functions α and β such that

$$\begin{array}{ll} \alpha: & \left] -\eta, \eta \right[\to M_1 \\ & \alpha\left(0 \right) = a, \quad \alpha'\left(0 \right) = h_1. \end{array}$$

and

$$\beta: \quad \left] -\chi, \chi \right[\to M_2 \\ \beta(0) = b, \quad \beta'(0) = h_2.$$

Fac^{Sciences} and Technology

2 pts Let observe that we can construct a differentiable function γ such that

$$\begin{split} \gamma \colon &] - \varepsilon, \varepsilon [\to M_1 \times M_2 \\ & t \mapsto \gamma(t) = \left(\alpha(t), \beta(t) \right), \end{split}$$

where $\varepsilon = \min(\eta, \chi) > 0$. Also, we have

$$\gamma(0) = (\alpha(0), \beta(0)) = (a, b)$$

and

$$\gamma'(0) = d\gamma(0) = (\alpha'(0), \beta'(0))$$

= $(h_1, h_2) = h.$

Therefore

 $h\in T_{(a,b)}\left(M_1\times M_2\right).$

Hence

 $T_a(M_1) \times T_a(M_2) \subset T_{(a,b)}(M_1 \times M_2).$

0.5 **pts** As we have

$$dim(T_a(M_1) \times T_a(M_2)) = dim(T_{(a,b)}(M_1 \times M_2)),$$

we obtain

$$T_a(M_1) \times T_a(M_2) = T_{(a,b)}(M_1 \times M_2).$$