

4 points

ABBES LAGHROUF UNIVERSITY KHENCHEIA Univ: Abbes Laghrour-Khenchela / Fac: ST / Dept: M/L3 Maths

FINAL EXAM : DIFFERENTIAL GEOMETRY 21 MAI 2024/H. RAMOUL

Exercice n=1

1. Show that a subset $M \subset \mathbb{R}^n$ is a 0-dimensional submanifold if and only if M is discrete, i.e. for every $p \in M$, there is an open set $U \subset \mathbb{R}^n$ such that $U \cap M = \{p\}$. 2. Show that a subset $M \subset \mathbb{R}^d$ is a *d*-dimensional submanifold if and only if M is open.

Let $M_i \subset \mathbb{R}^{n_i}$ be two d_i -submanifolds of class C^{k_i} for i = 1, 2. 1. Show that $M_1 \times M_2$ is a $(d_1 + d_2)$ -dimensional submanifold of $\mathbb{R}^{n_1+n_2}$ of class $C^{\min(k_1,k_2)}$. 2. Let $a \in M_1$ and $b \in M_2$. Show that

$$T_{(a,b)}(M_1 \times M_2) = T_a M_1 \times T_b M_2.$$

WWW. PHDCOMICS. COM