FINAL EXAM (Standard correction)
 PROGRAMMING TOOLS FOR MATHEMATICS

Duration: 1h 30
23Mai 2024
Full name: .
Domain/Group:

Exercise 01: (05pts)

Give briefly the signification of each of the following expressions:

| 1 | Workspace | The window that indicates in detail all the variables used (name, size, ...etc) |
| :--- | :---: | :--- | :--- |
| 2 | Format rat | The command that allow to display the numbers on a rational form |
| 3 | .1 | The element by element reverse division operation. |
| 4 | Subplot | Allow to divide the window on several rows and columns and to display several
 figures (curves) |
| 5 | Mode
 interactif | It's an operating mode used on the command window in which the execution is done
 line by line
 (01) |
| 6 | Hold on | Allow to display several curves on the same figure |

Exercise 2: (05 pts)
Let be the following matrix:

$$
\mathrm{B}=\left[\begin{array}{cccccc}
128 & 64 & 32 & 16 & 8 & 4 \\
-1 & 1 & 3 & 5 & 7 & 9 \\
6 & 5 & 4 & 3 & 2 & 1
\end{array}\right]
$$

Question	Answer
1. Create with one instruction the matrix B :	$\begin{aligned} & B=\left[2 .^{\wedge}(7:-1: 2) ;-1: 2: 9 ; 6:-1: 1\right] \\ & (01) \end{aligned}$
2. Display the first two columns of B.	$B(:, 1: 2)$
3. Exchange the elements of the first row with the last row :	$\begin{align*} & B([13],:)=B([31],:) \text { or } \tag{01}\\ & X=B(1,:) ; B(1,:)=B(3,:) ; B(3,:)=X \end{align*}$
4. create a matrix A where the order of the columns is reversed as shown below: $\mathrm{A}=\left[\begin{array}{cccccc} 4 & 8 & 16 & 32 & 64 & 128 \\ 9 & 7 & 5 & 3 & 1 & -1 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{array}\right]$	$A=B(:$, end $:-1: 1)$
5. Add the vector $\mathrm{V}=\left[\begin{array}{lllll}6 & 5 & 4 & 3 & 2\end{array}\right]$ as a row to the matrix \mathbf{A}	$V=[654321] ; A(4,:)=V$

Exercise 3: (06 pts)

Give the value of \mathbf{x} after the execution of each of the following codes:

Code		```x=[0:5]; y=x([1 2 3 4 56]); if (x-y)==(y-x) x=y([65432 1]); else x=y end```	$\begin{aligned} & \begin{array}{l} \mathrm{x}=\text { ones }(\mathbf{3 , 2}) ; \\ \text { For } \\ \mathrm{i}=1: \text { length(} \mathbf{x}(1,:)) \\ \quad \mathrm{x}=\mathrm{x}(1,:)^{* 2} ; \\ \text { end } ; \end{array} \end{aligned}$	$\begin{aligned} & \text { function } x=p s 2(U, V) \\ & n=\operatorname{size}(U, 2) ; \\ & x=0 . ; \\ & \text { for } i=1: n, \\ & x=x+U(i) * V(i) ; \\ & \text { end } \end{aligned}$
Value of X		$X=54321$ (01.5)	$X=44$ (01.5)	Error (we don't have the values of U and V) (01.5)

PS: The function tril returns the lower triangular part.

Exercise 4 : (04 pts)

1- Let be the three following functions
$\mathbf{F} \mathbf{1}(\mathbf{x})=x \sin (1 / x)$
$\mathrm{F} 2(\mathrm{x})=\mathrm{x}^{3}$
$\mathbf{F 3}(\mathbf{x})=x^{2}+3 x+5$

- Write a Matlab script that allows you to plot on the same figure the curves of the functions F1, F2 and F3 with different colors on the interval [-1 1]. With the title 'Comparative study of curves'
- Give the figure a legend and a grid
$X=\left[\begin{array}{ll}-1 & 1] ;\end{array}\right.$ (0.25pts)
$F 1=X . * \sin (1 / X)$; (0.25pts)
$F 2=X . \wedge 3$; \qquad (0.25pts)
$F 3=X . \wedge 2+3 . * X+5 ; \ldots \ldots .(0.25 p t s)$
Plot(X, F1, 'b-`) ;....... (0.5pts) Hold on ; (0.5pts) \(\operatorname{Plot}(X, F 2, ' g: `) ; ··· .\). (0.5pts)
Plot(X, F3, 'r--‘); \qquad (0.5pts)

Title ('Comparative study of curves');(0.25pts)
Grid on; (0.5pts)

Legend('F1','F2', 'F3'); \qquad (0.25pts)

Bonus Question: (01 points)

Let be the matrix \mathbf{D} defined by:

$$
\mathrm{D}=\begin{array}{cccc}
1.0000 & 1.0000 & 0.8491 & 0.6787 \\
1.0000 & 1.0000 & 0.9340 & 0.7577 \\
1.0000 & 0 & 1.0000 & 0 \\
0 & 1.0000 & 0 & 2.0000
\end{array}
$$

1- Express \mathbf{D} with a single statement in terms of eye, ones, zeros, rand and diag
$D=[o n e s(2), \operatorname{rand}(2,2) ; \operatorname{eye}(2), \operatorname{diag}([12])]$

