FINAL EXAM (Standard correction) <u>PROGRAMMING TOOLS FOR MATHEMATICS</u>

Duration : 1h 30	23Mai 2024
Full name:	Mark /20
Domain/Group:	

Exercise 01: (05pts)

Give briefly the signification of each of the following expressions:

1	Workspace	The window that indicates in detail all the variables used (name, size, \dots etc) (0.75)
2	Format rat	The command that allow to display the numbers on a rational form (0.75)
3	•/	The element by element reverse division operation. (0.75)
4	Subplot	Allow to divide the window on several rows and columns and to display several figures (curves) (0.75)
5	Mode interactif	It's an operating mode used on the command window in which the execution is done line by line (01)
6	Hold on	Allow to display several curves on the same figure (01)

Exercise 2: (05 pts)

Let be the following matrix:

	128	64	32	16	8	4
B=	-1	1	3	5	7	9
	6	5	4	3	2	1

Question	Answer			
1. Create with one instruction the matrix B :	$B = [2.^{(7)}(7: -1:2); -1:2:9; 6: -1:1]$ (01)			
2. Display the first two columns of B.	B(:, 1:2) (01)			
3. Exchange the elements of the first row with the last row :	B([1 3], :) = B([3 1], :) or (01) X=B(1, :); B(1, :) = B(3, :); B(3, :) = X			
4. create a matrix A where the order of the columns is reversed as shown below: $A = \begin{bmatrix} 4 & 8 & 16 & 32 & 64 & 128 \\ 9 & 7 & 5 & 3 & 1 & -1 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$	A=B(:, end:-1:1) (01)			
5. Add the vector V= [6 5 4 3 2 1] as a row to the matrix A	V = [6 5 4 3 2 1]; A(4, :) = V (01)			

Exercise 3: (06 pts)

Give the value of **x** after the execution of each of the following codes:

Code	x=ones(3,3) ;	x= [0:5]; y=x([1 2 3 4	x=ones(3,2) ;	function x = ps2(U,V)	
	y=tril(x) ;	5 6]); For		n = size(U,2);	
	while(sum(sum(x-	if (x-y)==(y-x)	i= 1:length(x(1, :))	x = 0.;	
	y))~=12)	x=y([654321]);	x=x(1,:)*2;	for i = 1:n,	
	x=x.^2+1;	else x =y	end;	x = x + U(i) * V(i);	
	end ;	end		end	
Value of	X = 2 2 2	X = 5 4 3 2 1	X= 4 4	Error (we don't have the	
X	2 2 2 (01.5)			values of U and V)	
	2 2 2	(01.5)	(01.5)	(01.5)	

PS: The function **tril** returns the lower triangular part.

Exercise 4 : (04 pts)

1- Let be the three following functions

F1(x)= $x \sin(1/x)$ **F2(x)**= x^3 **F3(x)**= $x^2 + 3x + 5$

- Write a Matlab script that allows you to plot on the same figure the curves of the functions F1, F2 and F3 with different colors on the interval [-1 1]. With the title **'Comparative study of curves'**
- Give the figure a legend and a grid

 $X=[-1 \ 1]; \dots, (0.25pts)$ $F1=X * sin(1/X) ; \dots, (0.25pts)$ $F2=X.^3 ; \dots, (0.25pts)$ $F3=X.^2+3.*X+5 ; \dots, (0.25pts)$ $Plot(X, F1, `b-`) ; \dots, (0.5pts)$ $Plot(X, F2, `g : `); \dots, (0.5pts)$ $Plot(X, F3, `r--`); \dots, (0.5pts)$ $Title ('Comparative study of curves'); \dots, (0.25pts)$ $Grid on; \dots, (0.5pts)$ $Legend(`F1', `F2', `F3'); \dots, (0.25pts)$ Bonus Question : (01 points) $1.0000 \quad 1.0000 \quad 0.8491 \quad 0.6787$

Lat ha the matrix D defined by:	D_1.0000	1.0000	0.9340	0.7577
Let be the matrix D defined by:	^{D –} 1.0000	0	1.0000	0
	0	1.0000	0	2.0000

1- Express **D** with a single statement in terms of *eye*, *ones*, *zeros*, *rand* and *diag*

 $D = [ones(2), rand(2,2); eye(2), diag([1 2])] \dots (01)$