ABBES LAGHROUR University, Khenchela.

Faculty of Sciences. Department of Mathematics and Computer Science.

Academic year: 2023-2024.

1st Year mathematics, mathematics and computer science. Module: Introduction to probability and descriptive statistics.

Responsible for the module: DERDOUKH.A

The final Exam Correction

* Exercise 1:

State whether these sentences are true or false

The sent	ence	T	F
1) In statistics, the term "value" alwa	ys refers to numbers.		
2) If you would like to find the media in numerical order.	n, then numeric data values should first be placed		
3) The standard deviation is always l	ess than or equal to 0.		
4) A cumulative relative frequency grant always reaches 100% as its maxim	aph always increases or stays constant (flat) and hum.		
5) The word "proportion" is equivale	nt to relative frequency, fraction, and percentage.		
6) Data analysis does not depend on wh	ether a variable is categorical or quantitative.		

* Exercise 2:

In a small town, we noted the number of rooms per apartment, and we prepared the following graphical representation (*The results are given rounded to* 10^{-2}).

1) The Mode of this statistical series is

1)	The Mode of this statisti	car sc.	1105 15		
1)	2	2)	3	3)	25
2)	The Arithmetic mean of	this s	catistical series is		
1)	3.27	2)	3.18	3)	3.37
3)	The Variance of this stat	istical	series is		
1)	2.15	2)	2.12	3)	2.19
4)	The Standard deviation of	of this	statistical series is		
1)	1.46	2)	1.56	3)	1.64

5) The Geometric mean of this statistical series is

1)	2.71	2)	2.81	3)	2.89
<i>6)</i> 7	The Harmonic mean of t	his st	atistical series is		
1)	2.75	2)	2.30	3)	2.40
7) [The quadratic mean of the	nis sta	tistical series is		
1)	3.65	2)	3.50	3)	3.70

***** *Exercise 3*:

The statistical series is represented by the distribution function curve in the figure below

1) The First quartile of this statistical series is

1)	61.9242	2)	61.8232	3)	61.7222
2)	The Median of this statis	tical s	series is		
1)	66.3138	2)	66.4148	3)	66.5158
3) 7	The Third quartile of this	statis	tical series is		l
1)	70.6538	2)	70.7548	3)	70.8558
4) 7	The Extent e of this statis	tical s	eries is		
1)	25	2)	35	3)	45

* Exercise 4:

Let A and B be two events, from the same probability space (Ω, F, P) , such that:

 $P(B/\overline{A}) = 0.06$; P(B/A) = 0.95; P(A) = 0.02

1)	0.2442	<i>2)</i>	0./338	3)	0.03/
2)	The value of the condit	ional	probability of $ar{A}$ knowing $ar{B}$: (P	$(\bar{A}/\bar{B}))$ is	S

If we have the probability of an event E is $(\frac{9}{20})^n$, then the smallest value of n which makes II. $P(\bar{E}) \ge 0.99$ is

1) 6 2) 7 3) 5
